
ENFrame: A Platform for Processing Probabilistic Data

Sebastiaan J. van Schaik1,2 Dan Olteanu1 Robert Fink1

{Sebastiaan.van.Schaik,Dan.Olteanu,Robert.Fink}@cs.ox.ac.uk
1Department of Computer Science, University of Oxford, United Kingdom

2Oxford e-Research Centre, University of Oxford, United Kingdom

ABSTRACT
This paper introduces ENFrame, a unified data processing
platform for querying and mining probabilistic data. Us-
ing ENFrame, users can write programs in a fragment of
Python with constructs such as bounded-range loops, list
comprehension, aggregate operations on lists, and calls to
external database engines. The program is then interpreted
probabilistically by ENFrame.

The realisation of ENFrame required novel contributions
along several directions. We propose an event language that
is expressive enough to succinctly encode arbitrary correla-
tions, trace the computation of user programs, and allow for
computation of discrete probability distributions of program
variables. We exemplify ENFrame on three clustering algo-
rithms: k-means, k-medoids, and Markov clustering. We in-
troduce sequential and distributed algorithms for computing
the probability of interconnected events exactly or approxi-
mately with error guarantees.

Experiments with k-medoids clustering of sensor readings
from energy networks show orders-of-magnitude improve-
ments of exact clustering using ENFrame over näıve cluster-
ing in each possible world, of approximate over exact, and
of distributed over sequential algorithms.

1. INTRODUCTION
Recent years have witnessed a solid body of work in proba-

bilistic databases with sustained systems building effort and
extensive analysis of computational problems for rich classes
of queries and probabilistic data models of varying expres-
sivity [29]. In contrast, most state-of-the-art probabilistic
data mining approaches so far consider the restricted model
of probabilistically independent input and produce hard, de-
terministic output [1]. This technology gap hinders the de-
velopment of data processing systems that integrate tech-
niques for both probabilistic databases and data mining.

The ENFrame data processing platform aims to close this
gap by allowing users to specify iterative programs to query
and mine probabilistic data. The semantics of ENFrame
programs is based on a unified probabilistic interpretation
of the entire processing pipeline from the input data to the
program result. It features an expressive set of program-
ming constructs, such as assignments, bounded-range loops,

(c) 2014, Copyright is with the authors. Published in Proc. 17th Inter-
national Conference on Extending Database Technology (EDBT), March
24-28, 2014, Athens, Greece: ISBN 978-3-89318065-3, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0.

list comprehension, aggregate operations on lists, and calls
to database engines, coupled with aspects of probabilistic
databases, such as possible worlds semantics, arbitrary data
correlations, and exact and approximate probability com-
putation with error guarantees. Existing probabilistic data
mining algorithms do not share these latter aspects.

Under the possible worlds semantics, the input is a proba-
bility distribution over a finite set of possible worlds, whereby
each world defines a standard database or a set of input data
points. The result of a user program is equivalent to execut-
ing it within each world and is thus a probability distribution
over possible outcomes (e.g., partitionings). ENFrame ex-
ploits the fact that many of the possible worlds are alike,
and avoids iterating over the exponentially many worlds.

Correlations occur naturally in query results [29], after
conditioning probabilistic databases using constraints [19],
and are supported by virtually all mainstream probabilistic
models. If correlations are ignored, the output can be ar-
bitrarily off from the expected result [32, 2]. For instance,
consider two similar, but contradicting sensor readings (mu-
tually exclusive data points) in a clustering setting. There is
no possible world and thus no cluster containing both points,
yet by ignoring their negative correlation, we would assign
them to the same cluster.

The user is oblivious to the probabilistic nature of the in-
put data, and can write programs as if the input data were
deterministic. It is the task of ENFrame to interpret the
program probabilistically. The approach taken here is to
trace the user computation using fine-grained provenance,
which we call events. The event language is a non-trivial
extension of provenance semirings [11] and semimodules [4]
that are used to trace the evaluation of positive relational al-
gebra queries with aggregates and to compute probabilities
of query results [10]. It features events with negation, ag-
gregates, loops, and definitions. The language is expressive
enough to succinctly encode arbitrary correlations occurring
in the input data (e.g., modelled on Bayesian networks and
pc-tables) and in the result of the user program (e.g., co-
occurrence of data points in the same cluster), and trace the
program state at any time. By annotating each computation
in the program with events, we effectively translate it into
an event program: variables become random variables whose
possible outcomes are conditioned on events. Selected events
represent the probabilistic program output, e.g. in case of
clustering: the probability that a data point is a medoid, or
the probability that two data points are assigned to the same
cluster. Events are also essential for sensitivity analysis and
explanation of the program result.

The most expensive task supported by ENFrame is prob-
ability computation for event programs, which is #P-hard

1: (O, n) = loadData() # list and number of objects
2: (k, iter) = loadParams() # number of clusters and iterations
3: M = init() # initialise medoids

4: for it in range(0,iter): # clustering iterations
5: InCl = [None] * k # assignment phase
6: for i in range(0,k):
7: InCl[i] = [None] * n
8: for l in range(0,n):
9: InCl[i][l] = reduce_and(
10: [(dist(O[l],M[i]) <= dist(O[l],M[j])) for j in range(0,k)])
11: InCl = breakTies2(InCl) # each object is in exactly one cluster

12: DistSum = [None] * k # update phase
13: for i in range(0,k):
14: DistSum[i] = [None] * n
15: for l in range(0,n):
16: DistSum[i][l] = reduce_sum(
17: [dist(O[l],O[p]) for p in range(0,n) if InCl[i][p]])

18: Centre = [None] * k
19: for i in range(0,k):
20: Centre[i] = [None] * n
21: for l in range(0,n):
22: Centre[i][l] = reduce_and(
23: [DistSum[i][l] <= DistSum[i][p] for p in range(0,n)])
24: Centre = breakTies1(Centre) # enforce one Centre per cluster

25: M = [None] * k
26: for i in range(0,k):
27: M[i] = reduce_sum([O[l] for l in range(0,n) if Centre[i][l]])

∀i in 0..n− 1 : Oi ≡ Φ(oi)⊗ oi
M0
−1 ≡ Φ(oπ(0))⊗ oπ(0); . . . ;M

k−1
−1 ≡ Φ(oπ(k−1))⊗ oπ(k−1)

∀it in 0..iter− 1 :
∀i in 0..k − 1 :
∀l in 0..n− 1 :

InCli,lit ≡
∧k−1
j=0

[
dist(Ol,Mi

it−1) ≤ dist(Ol,Mj
it−1)

]

Encoding of breakTies2 omitted

∀i in 0..k − 1 :
∀l in 0..n− 1 :

DistSumi,l
it ≡

∑n−1
p=0 InCli,pit ∧ > ⊗ dist(Ol, Op)

∀i in 0..k − 1 :
∀l in 0..n− 1 :

Centrei,lit ≡
∧n−1
p=0

[
DistSumi,l

it ≤ DistSumi,p
it

]

Encoding of breakTies2 omitted

∀i in 0..k − 1 :

Mi
it =

∑n−1
l=0 Centrei,lit ∧O

l

Figure 1: K-medoids clustering specified as user program (left) and simplified event program (right).

in general. We developed sequential and distributed algo-
rithms for both exact and approximate probability computa-
tion with error guarantees. The algorithms operate on graph
representations of the event programs called event networks.
Expressions common to several events are only represented
once in such graphs. Event networks for data mining tasks
are very repetitive and highly interconnected due to the com-
binatorial nature of the algorithms: the events at each itera-
tion are expressions over the events at the previous iteration
and have the same structure at each iteration. Moreover, the
event networks can be cyclic, so as to account for program
loops. While it is possible to unfold bounded-range loops,
this can lead to prohibitively large event networks.

The key challenge faced by ENFrame is to compute the
probabilities of a large number of interconnected events that
are defined over several iterations, exhibit deep nesting struc-
tures, and use novel expressive constructs. This contrasts
with earlier work on probability computation for proposi-
tional events, e.g. [5, 10], which only considers one event
in disjunctive normal form at a time. Clustering events are
many, highly interconnected, and have deep nesting struc-
tures. Rather than separately computing the probability
of each event, ENFrame’s algorithms employ a novel bulk-
compilation technique, using Shannon expansion to depth-
first explore the decision tree induced by the input random
variables and the events in the program. The approximation
algorithms use an error budget to prune large fragments
of this decision tree that only account for a small proba-
bility mass. We introduce three approximation approaches
(eager, lazy, and hybrid), each with a different strategy for
spending the error budget. The distributed versions of these
algorithms divide the exploration space into fragments for
concurrent exploration.

While the computation time can grow exponentially in the
number of input random variables in worst case, the struc-
ture of correlations can reduce it dramatically. As shown
experimentally, ENFrame’s algorithm for exact probability
computation is orders of magnitude faster than executing
the user program in each possible world.

To sum up, the contributions of this paper are as follows:
• We propose the ENFrame platform for processing prob-

abilistic data. ENFrame can evaluate user programs on
probabilistic data with arbitrary correlations following
the possible worlds semantics.

• User programs are written in a fragment of Python that
supports bounded-range loops, list comprehension, ag-
gregates, and calls to external database engines. We
illustrate ENFrame’s features by giving programs for
three clustering algorithms (k-means, k-medoids, and
Markov clustering) and provide a formal specification
of ENFrame’s user language which can be used to write
arbitrary programs for the platform.

• User programs are annotated by ENFrame with events
that are expressive enough to capture correlations in the
input data, trace the program computation, and allow
for probability computation.

• ENFrame uses novel sequential and distributed algo-
rithms for exact and approximate probability compu-
tation of event programs.

• We implemented ENFrame’s probability computation
algorithms in C++.

• We report on experiments with k-medoids clustering of
readings from partial discharge sensors in energy net-
works [22]. We show orders-of-magnitude performance
improvements of ENFrame’s exact algorithm over the
näıve approach of clustering in each possible world, of
approximate over exact clustering, and of distributed
over sequential algorithms. Experiments also confirm
that ENFrame’s clustering accuracy is identical to that
of the näıve approach and that this is not the case for
clustering in the top-k most probable worlds.

The paper is organised as follows. Section 2 introduces the
Python fragment supported by ENFrame along with encod-
ings of clustering algorithms. Section 3 introduces our event
language and shows how user programs are annotated with
events. Our probability computation algorithms are intro-
duced in Section 4 and experimentally evaluated in Sec-
tion 5. Section 6 overviews recent related work.

1: (O, n) = loadData() # list and number of objects
2: (k, iter) = loadParams() # number of clusters and iterations
3: M = init() # initialise centroids

4: for it in range(0,iter): # clustering iterations
5: InCl = [None] * k # assignment phase
6: for i in range(0,k):
7: InCl[i] = [None] * n
8: for l in range(0,n):
9: InCl[i][l] = reduce_and(
10: [dist(O[l],M[i]) <= dist(O[l],M[j]) for j in range(0,k)])
11: InCl = breakTies2(InCl) # each object is in exactly one cluster

12: M = [None] * k # update phase
13: for i in range(0,k):
14: M[i] = scalar_mult(invert(
15: reduce_count([1 for l in range(0,n) if InCl[i][l]])),
16: reduce_sum([O[l] for l in range(0,n) if InCl[i][l]]))

∀i in 0..n− 1 : Oi ≡ Φ(oi)⊗ oi
M0
−1 ≡ Φ(oπ(0))⊗ oπ(0); . . . ;M

k−1
−1 ≡ Φ(oπ(k−1))⊗ oπ(k−1)

∀it in 0..iter− 1 :
∀i in 0..k − 1 :
∀l in 0..n− 1 :

InCli,lit ≡
∧k−1
j=0

[
dist(Ol,Mi

it−1) ≤ dist(Ol,Mj
it−1)

]

Encoding of breakTies2 omitted

∀i in 0..k − 1 :

Mi
it ≡

(∑n−1
l=0 InCli,lit ∧ > ⊗ 1

)−1
·
(∑n−1

l=0 InCli,lit ∧O
l
)

Figure 2: K-means clustering specified as user program (left) and simplified event program (right).

2. ENFRAME’S USER LANGUAGE
This section introduces the user language supported by

ENFrame. Its design is grounded in three main desiderata:

1. It should naturally express common mining algorithms,
allow to issue queries and manipulate their results.

2. User programs must be oblivious to the deterministic or
probabilistic nature of the input data and to the proba-
bilistic formalism considered.

3. It should be simple enough to allow for an intuitive and
straightforward probabilistic interpretation.

We settled on a subset of Python that can express, among
others, k-means, k-medoids, and Markov clustering. In line
with query languages for probabilistic databases, where a
Boolean query Q is a map Q : D → {true, false} for de-
terministic databases and a Boolean random variable for
probabilistic databases, every user program has a sound se-
mantics for both deterministic and probabilistic input data:
in the former case, the result of a clustering algorithm is a
deterministic clustering, in the latter case it is a probability
distribution over possible clusterings.

The user language comprises the following constructs:

Variables and arrays. Variables can be of scalar types
(real, integer, or Boolean) or arrays. Examples of variable
assignments: V = 2, W = V, M[2] = True, or M[i] = W. Ar-
rays must be initialised, e.g., for array M of cardinality k:
M = [None] * k. Additionally, the expression range(0, n)
specifies the array [0,...,n-1].

Functions. Scalar variables can be multiplied, exponenti-
ated (pow(B, r) for Br), and inverted (invert(B) for 1/B).
The function dist(A,B) is a distance measure on the fea-
ture space between the arrays A,B of reals; scalar_mult is
component-wise multiplication of an array with a scalar.

Reduce. Given a one-dimensional array M of some scalar
type, it can be reduced to a scalar value using one of the func-
tions reduce_or, reduce_and, reduce_sum, reduce_mult,
reduce_count. For instance, for an array B of Booleans, the
expression reduce_and(B) computes the conjunction of the
truth values in B, and the expression reduce_count(B) com-
putes the number of elements in B. For a two-dimensional
array of reals or integers (an array of vectors), reduce_sum
computes the component-wise sum of the vectors.

List comprehension. Inside a reduce-function, anony-
mous arrays may be defined using list comprehension. For
example, given an array B of Booleans of size n, the ex-
pression reduce_sum([1 for i in range(0,n) if B[i]])
counts the number of True values in B.

Loops. We only allow bounded-range loops; for any fixed
integer n and counter variable i, for-loops can be defined by:

for i in range(0,n). This allows us to know the size of
each constructed array at compile time.

Input data. The abstract primitive loadData() is used
to specify input data for algorithms. This function can be
implemented to load the objects from disk or to issue queries
to a database. ENFrame supports positive relational algebra
queries with aggregates via the SPROUT query engine for
probabilistic data [10]. The abstract methods loadParams()
and init() are used to set algorithm parameters such as the
number of iterations and clusters of a clustering algorithm.

Output. All program variables have a probabilistic in-
terpretation and thus define a probability density function
(PDF) that can be presented to the user. For instance, the
user can define a variable stating that two objects belong to
the same cluster, or are likely to co-occur together in clus-
ters. PDFs of program variables can be further processed,
e.g. by a probabilistic DBMS.

2.1 Clustering Algorithms in ENFrame
We illustrate ENFrame’s user language with three ex-

ample data mining algorithms: k-means, k-medoids, and
Markov clustering. Figures 1, 2, and 3 list user programs
for these algorithms; we next discuss each of them.

k-means clustering. The k-means algorithm partitions a
set of n data points o1, . . . , on into k groups of similar data
points. We initially choose a centroid M i for each cluster,
i.e., a data point representing the cluster centre (initiali-
sation phase). In successive iterations, each data point is
assigned to the cluster with the closest centroid (assignment
phase), after which the centroid is recomputed for each clus-
ter (update phase). The algorithm terminates after a given
number of iterations or after reaching convergence. Note
that our user language does not support fixpoint computa-
tion, and hence checking convergence.

Figure 2 implements k-means. The set O of n input objects
is retrieved using a loadData call. Each object is represented
by a feature vector (i.e., array) of reals. We then load the
parameters k, the number iter of iterations, and initialise
cluster centroids M (line 3). The initialisation phase has a
significant influence on the clustering outcome and conver-
gence. We assume that initial centroids have been chosen,
for example by using a heuristic. Subsequently, an array
InCl of Booleans is computed such that InCl[i][l] is True
if and only if M[i] is the closest centroid to object O[l]
(lines 5–10); every object is then assigned to its closest clus-
ter. Since two clusters may be equidistant to an object, ties
are broken using the breakTies2 call (line 11); it fixes an
order of the clusters and enforces that each object is only
assigned to the first of its potentially multiple closest clus-

1: (O, n, M) = loadData() # M is a stochastic n*n matrix of
2: # edge weights between the n nodes, O is list of nodes
3: (r, iter) = loadParams() # Hadamard power, number of iterations

4: for it in range(0,iter):
5: N = [None] * n # expansion phase
6: for i in range(0,n):
7: N[i] = [None] * n
8: for j in range(0,n):
9: N[i][j] = reduce_sum([M[i][k]*M[k][j] for k in range(0,n)])

10: M = [None] * n # inflation phase
11: for i in range(0,n):
12: M[i] = [None] * n
13: for j in range(0,n):
14: M[i][j] = pow(N[i][j],r)*invert(
15: reduce_sum([pow(N[i][k],r) for k in range(0,n)]))

∀i in 0..n− 1 : Oi ≡ Φ(oi)⊗ oi

∀it in 0..iter− 1 :
∀i in 0..n− 1 :
∀j in 0..n− 1 :

Ni,jit =
∑n−1
k=0 M

i,k
it-1 ·M

k,j
it-1

∀i in 0..n− 1 :

∀j in 0..n− 1 :

Mi,j
it =

(∑n−1
k=0 (Ni,kit)r

)−1
· (Ni,jit)r

Figure 3: Markov clustering specified as user program (left) and simplified event program (right).

ters. Next, the new cluster centroids M[i] are computed as
the centroids of each cluster (lines 12–16). The assignment
and update phases are repeated iter times (line 4).

k-medoids clustering. The k-medoids algorithm is
almost identical to k-means, but elects k cluster medoids
rather than centroids: these are cluster members that min-
imise the sum of distances to all other objects in the clus-
ter. The assignment phase is the same as for k-means (lines
5–11), while the update phase is more involved: we first
compute an array DistSum of sums of distances between
each cluster medoid and all other objects in its cluster (lines
12–17), then find one object in each cluster that minimises
this sum (lines 18–24), and finally elect these objects as the
new cluster medoids M (lines 25–27). The last step uses re-
duce_sum to select exactly one of the objects in a cluster
as the new medoid, since for each fixed i only one value in
Centre[i][l] is True due to the tie-breaker in line 24.

Markov clustering (MCL). MCL is a fast and scalable
unsupervised cluster algorithm for graphs based on simu-
lation of stochastic flow [31]. Natural clusters in a graph
are characterised by the presence of many edges within a
cluster and few edges across clusters. MCL simulates ran-
dom walks within a graph by alternating two operations:
expansion and inflation. Expansion corresponds to com-
puting random walks of higher length. It associates new
probabilities with all pairs of nodes, where one node is the
point of departure and the other is the destination. Since
higher length paths are more common within clusters than
between different clusters, the probabilities associated with
node pairs lying in the same cluster will, in general, be rela-
tively large as there are many ways of going from one to the
other. Inflation has the effect of boosting the probabilities of
intra-cluster walks and demoting inter-cluster walks. This
is achieved without a priori knowledge of cluster structure;
it is the result of cluster structure being present.

Figure 3 gives the MCL user program. Expansion coin-
cides with taking the power of a stochastic matrix M using
the normal matrix product (i.e. matrix squaring). Inflation
corresponds to taking the Hadamard power of a matrix (tak-
ing powers entry-wise). It is followed by a scaling step to
maintain the stochastic property, i.e., the matrix elements
correspond to probabilities that sum up to 1 in each column.

Section 3 discusses the probabilistic interpretation of the
computation of the above three clustering algorithms.

2.2 Syntax of the User Language
Figure 4 specifies the formal grammar for the language

of user programs. A program is a sequence of declarations
(DECL) and loop blocks (LOOP), each of which may again
contain declarations and nested loops. The language allows
to assign expressions (EXPR) to variable identifiers (ID).

LOOP ::= { {DECL}{ for ID in RANGE: {LOOP} } }
DECL ::= (ID = EXPR) | (‘(’{ID, } ID ‘)’ = EXT)

EXPR ::= LIT | ID | [None] ‘*’ EXPR) | (EXPR COMP EXPR) |
(REDUCE ‘(’ LCOMPR ‘)’) | (pow‘(’EXPR, EXPR‘)’) |
(invert‘(’EXPR‘)’) | (EXPR ‘*’ EXPR) | (EXPR ‘+’ EXPR) |
(scalar mult‘(’EXPR, EXPR‘)’) | (breakTies‘(’EXPR‘)’)

LCOMPR ::= [EXPR for ID in RANGE if EXPR]

REDUCE ::= reduce and | reduce or | reduce sum |
reduce mult | reduce count

RANGE ::= range(EXPR, EXPR)

COMP ::= ‘<’ | ‘>’ | ‘==’ | ‘<=’ | ‘>=’

EXT ::= loadData() | loadParams() | init()

ID ::= An identifier

LIT ::= A (Boolean, integer, float) literal

Figure 4: The grammar of the user language.

An expression may be a Boolean, integer, or float constant
(LIT), an identifier, an array declaration, the result of a
Boolean comparison between expressions, or the result of
such operations as sum, product, inversion, or exponenti-
ation. The result of a reduce operation on an anonymous
array created through list comprehension (LCOMPR), and
the result of breaking ties in a Boolean array give rise to
expressions; we elaborate on these two constructions below.

In addition to the syntactic structure as defined by the
grammar, programs have to satisfy the following constraints:

Bounded-range loops. The parameters to the range
construct must be integer constants (or immutable integer-
valued variables). This restriction ensures that for-loops
(LOOP) and list comprehensions (LCOMPR) are of bounded
size that is known at compile time.

Anonymous arrays via list comprehension. List com-
prehension may only be used to construct one-dimensional
arrays of base types (i.e., integers, floats, or Booleans).

Breaking ties. Clustering algorithms require explicit
handling of ties: For instance, if two objects are equidistant
to two distinct cluster centroids in k-means, the algorithm
has to decide which cluster the object will be assigned to.
In ENFrame programs, the membership of objects to clus-
ters can be encoded by a Boolean array like InCl such that
InCl[i][l] is true if and only if object l is in cluster i. In
this context, a tie is a configuration of InCl in which for a
fixed object l, InCl[i][l] is True for more than one cluster
i. We explicitly break such ties using the function break-
Ties2(M). For each fixed value i of the second dimension
(hence the 2 in the function name) of the 2-dimensional ar-
ray M, it iterates over the first dimension of M and sets all
but the first True value of M[i][l] to False. Similarly, the

function breakTies1(M) fixes the first dimension and breaks
ties in the second dimension of M, and breakTies(M) breaks
ties in a one-dimensional array.

3. TRACING COMPUTATION BY EVENTS
The central concept for representing user programs in

ENFrame is that of events. Each event is a concise syn-
tactic encoding of a random variable and its probability
distribution. This section describes the syntax and seman-
tics of events and event programs, and finally explains how
ENFrame programs written in the user language from Sec-
tion 2 can be translated to event programs.

The key features of events and event programs are:

• Events can encode arbitrarily correlated, discrete prob-
ability distributions over input objects. In particu-
lar, they can succinctly encode instances of such for-
malisms as Bayesian networks and pc-tables. The in-
put objects and their correlations can be explicitly
provided, or imported via a positive relational algebra
query with aggregates over pc-tables [10].

• By allowing non-Boolean events, our encoding is ex-
ponentially more succinct than an equivalent purely
Boolean description.

• Each event has a well-defined probabilistic semantics
that allows to interpret it as a random variable.

• The iterative nature of many clustering algorithms car-
ries over to event programs, in which events can be de-
fined by means of nested loops. This construction to-
gether with the ability to reuse existing, named events
in the definition of new, more complex events leads to
a concise encoding of a large number of distinct events.

The events generated by user programs are compositions of
events associated with objects (data points) in the input
data set: each object ol is annotated with an event over a
set X of independent Boolean random variables.

Example 1. Clustering in possible worlds. We start
by presenting an instructive example of k-medoids clustering
under possible worlds semantics. Let o0, . . . , o3 be objects
in the feature space as shown below. They can be clustered
into two clusters using k-medoids with medoids o1 and o3.

o0 o1 o2 o3

The possible valuations ν : X → {true, false} define the
the possible worlds of the input objects: for each valuation ν
there exists one world that contains exactly those objects ol
for which Φ(ol) is true under ν. The probability of a world
is the product of the probabilities of the variables x ∈ X
taking a truth value ν(x).
Assume that the input data specifies the following events:
Φ(o0) = x1 ∨ x3, Φ(o1) = x2, Φ(o2) = x3, Φ(o3) = ¬x2 ∧ x4.

Distinct worlds can have different clustering results, as ex-
emplified next. The world defined by {x1 7→ >, x2 7→ ⊥,
x3 7→ >, x4 7→ >} consists of objects o0, o2, and o3, for
which k-medoids clustering yields:

o0 o1 o2 o3

Similarly, the worlds defined by {x1 7→ >, x2 7→ >, x3 7→
>} and any assignment for x4, yields:

o0 o1 o2 o3

The probability of a query “Are o1 and o2 in the same
cluster?” is the sum of the worlds in which o1 and o2 are in
the same cluster. 2

Events do not only encode the correlations and probabili-
ties of input objects, but can symbolically encode the entire
clustering process. We illustrate this in the next example.

Example 2. Symbolic encoding of k-means by events.
We again assume four input objects o0, . . . , o3 with their re-
spective events Φ(ol). This example introduces conditional
values (c-values) which are expressions of the form Φ ⊗ v,
where Φ is a Boolean formula and v is a vector from the fea-
ture space. Intuitively, this c-value takes the value v when-
ever Φ evaluates to true, and a special undefined value when
Φ is false. C-values can be added and multiplied; for exam-
ple, the expression Φ ⊗ v + Ψ ⊗ w evaluates to v + w if Φ
and Ψ are true, or to v if Φ is true and Ψ is false, etc.

Equipped with c-values, an initialisation of k-means with
k = 2 can for instance be written in terms of two expressions
M0 = Φ(o0)⊗o0 +¬Φ(o0)⊗o2 and M1 = >⊗0.5 · (o1 +o3):
centroid M0 is set to object o0 if Φ(o0) is true and to o2 if
Φ(o0) is false; M1 is the geometric centre of o1 and o3.

In the assignment phase (lines 5–11 of Figure 2), each ob-
ject is assigned to its nearest centroid. The condition InCli,l

(ol being closest to M i) can be written as the Boolean event

InCli,l ≡
∧1
j=0

[
dist(Φ(ol)⊗ ol,M i) ≤ dist(Φ(ol)⊗ ol,M j)

]
,

which encodes that the distance from ol to centroid M0 is
smaller than the distance to centroid M1.

Given the Boolean events InCli,l, we can represent the
centroid of cluster i for the next iteration by the expression(∑3

l=0 InCli,l ⊗ 1
)−1

·
(∑3

l=0 InCli,l ⊗ ol
)

,

which specifies a random variable over possible cluster cen-
troids conditioned on the assignments of objects to clusters
as encoded by InCli,l (lines 12–16). This expression is expo-
nentially more succinct than an equivalent purely Boolean
encoding of centroids, since the latter would require one
Boolean expression for each subset of the input objects. 2

The event programs corresponding to the three user pro-
grams for k-means, k-medoids, and MCL are given on the
right side of Figures 1–3. In addition to the constructs intro-
duced in Example 2, they use event declarations that assign
identifiers to event expressions, and ∀i-loops that specify sets
of events parametrised by i. The remainder of this section
specifies the formal syntax and semantics of event programs,
and gives a translation from user to event programs.

3.1 Syntax of Event Expressions
The grammar for event expressions is as follows:

VAL ::= A scalar or feature vector

INT ::= Any integer

CVAL ::= EVENT⊗VAL | CVAL−1 | CVAL+CVAL | CVALINT |
CVAL · CVAL | dist(CVAL, CVAL) | EVENT ∧ CVAL

COMP ::= ≤ | ≥ | = | < | >
ATOM ::= [CVAL COMP CVAL]

EID ::= Elements of a set of event identifiers

EVENT ::= Propositional formula over X, EID, ATOM

Conditional values. Reals and feature vectors are de-
noted by VAL. Together with a propositional formula, they
give rise to a conditional value (CVAL), c-value for short.

Functions of conditional values. Like scalars and fea-
ture vectors, c-values can be added, multiplied, and expo-
nentiated. Additionally, the distance between c-values yields
another c-value, and

∑
- and

∏
-expressions are supported.

Event expressions. Event expressions (EVENT) are
propositional formulas over constants > (true), ⊥ (false),
a set X of Boolean random variables, event identifiers, and
propositions defined by ATOM: [CVAL COMP CVAL] rep-
resents the truth value obtained by comparing two c-values.

3.2 Semantics of Event Expressions
The semantics of event expressions is defined by extending

a Boolean valuation ν : X → {true, false} to a valuation
of c-values and event expressions. We define in the sequel
how ν acts on each of the expression types in the grammar.
The base cases of this mapping are the standard algebraic
operations on scalars and the feature space, extended by
special undefined elements as follows.

We extend the reals (and their operations +, ·, ()−1) by
a special element u (for undefined) such that 0−1 = u. Op-
erators +, · propagate u as u+ x = x and u · x = u for any
real x. For any other reals x, y, + and · are as usual. For
example, 5 · (3− 3)−1 = 5 · u = u.

Similarly, we extend the feature space by an element u.
For any real a and feature vector, u and u are propagated
as u · x = u, u + x = x, a · u = u, and u · x = u.

The grammar for event programs does not distinguish be-
tween scalars and feature vectors for the sake of notational
clarity. The following description implicitly assumes that
the expressions are well-typed; e.g., the expression dist(x, y)
is only defined for vector-valued variable symbols x, y.

CVAL. Conditional values of the form EVENT⊗VAL have
an if-then-else semantics: if EVENT evaluates to true, then
EVENT⊗VAL evaluates to VAL, else it evaluates to u (or
u for vector-valued c-values); the recursively constructed
CVAL expressions have the natural recursive semantics that
ultimately defaults to + and · for scalars and feature vectors.

ν(EVENT⊗VAL) =

{
VAL, if ν(EVENT) = true

u (u, resp.) otherwise

ν(CVAL1 + CVAL2) = ν(CVAL1) + ν(CVAL2)

ν(CVAL1 · CVAL2) = ν(CVAL1) · ν(CVAL2)

ν(CVAL−1) = ν(CVAL)−1

ν(dist(CVAL1, CVAL2)) =


u, if ν(CVAL1) = u or

ν(CVAL2) = u

dist(ν(CVAL1), ν(CVAL2)), else

ν(CVALINT) = ν(CVAL)INT

ν(EVENT ∧ CVAL) =

{
ν(CVAL), if ν(EVENT) = true

u (u, resp.) otherwise

ATOM, EVENT. Comparisons ν([CVAL1 θ CVAL2]) for
θ ∈ {≤,≥,=, <,>} between two c-values evaluate to false if
they are both defined (ν(CVAL1) 6= u and ν(CVAL2) 6= u)
and the comparison does not hold; otherwise (i.e., if at least
one of the c-values is undefined, or if the comparison holds),
it evaluates to true. The semantics of the Boolean proposi-
tional EVENT expressions is standard, i.e., by propagating
ν through the propositional operators ∧,∨,¬. For instance
ν(EVENT1 ∧ EVENT2) evaluates to true if ν(EVENT1) =
ν(EVENT2) = true, and to false otherwise.

3.3 Probabilistic Semantics of Events
We next give a probabilistic interpretation of event expres-

sions that explains how they can be understood as random
variables: Boolean event expressions (EVENT) give rise to

Boolean random variables, and conditional values (CVAL)
give rise to random variables over their respective domain.

For every random variable x ∈ X, we denote by Px[true]
and Px[false] the probability that x is true or false, re-
spectively; we also simply write Px for Px[true]. Let
Ω = {ν : X → {true, false}} be the set of mappings from
the random variables X to true and false.

Definition 1 (Induced Probability Space). Together, the
probability mass function Pr(ν) =

∏
x∈X Px[ν(x)] for ev-

ery sample ν ∈ Ω, and the probability measure Pr(E) =∑
ν∈E Pr(ν) for E ⊆ Ω define a probability space (Ω, 2Ω,Pr)

that we call the probability space induced by X.

An event expression E is a random variable over the prob-
ability space induced by X with probability distribution

PE [s] = Pr
(
{ν ∈ Ω | ν(E)=s}

)
=

∑
ν∈Ω:ν(E)=s

Pr(ν).

By virtue of this definition, every Boolean event expres-
sion becomes a Boolean random variable, and real-valued
(vector-valued) c-values become random variables over the
reals (the feature space).

3.4 Event Programs
Event programs are imperative specifications that define

a finite set of named c-values and event expressions. The
grammar for event programs is as follows:

INT ::= A positive integer

VAR ::= A variable symbol

LOOP ::= { {DECL} { ∀ VAR in INT..INT: {LOOP} } }
DECL ::= EID ≡ EVENT

Event programs consist of a sequence of event declarations
(DECL) and nested loops (LOOP) of event declarations.

A central concept is that of event identifiers (EID); it is
required that event declarations are immutable, i.e., each
distinct EID may only be assigned once to an event expres-
sion. Inside a ∀i-loop, identifiers can be parametrised by i
to create a distinct identifier in each iteration of the loop.

The meaning of an event program is simply the set of all
named and grounded c-value and event expressions defined
by the program; here, grounded means that all identifiers in
expressions are recursively resolved and replaced by the ref-
erenced expressions. For declarations outside of loops, this
is clear; each declaration inside of (nested loops) is instanti-
ated for each value of the loop counter variables.

3.5 From User Programs to Event Programs
The translation of user to event programs has two main

challenges: (1) Translating mutable variables and arrays to
immutable events, and (2) translating function calls such as
reduce_*. We cover these two issues separately.

From mutable variables to immutable events. It is
natural to reassign variables in user language programs, for
example when updating k-means centroids in each iteration
based on the cluster configuration of the previous iteration.
In contrast, events in event programs are immutable, i.e.,
can be assigned only once. The translation from the user
language to the event language utilises a function getLabel
that generates for each user language variable M a sequence
of unique event identifiers whose lexicographic order reflects
the sequence of assignments of M .

The idea of getLabel is to first identify the nested loop
blocks of the user language program, and then to establish a
counter for each distinct variable symbol M and each block.

An assignment of a variable within k nested blocks corre-
sponds to an event identifier of the form Mc1.ck where
c1, . . . , ck are the k counters for the k blocks. Within each
block, its corresponding counter is incremented for every as-
signment of its variable symbol. When going from one block
into a nested inner block, the counters for the outer blocks
are kept constant while the counter for the inner block is
incremented as M is reassigned in the inner block.

Special attention must be paid to the encoding of entering
and leaving a block: in order to carry over the reference to
a variable Mc1.ck to the next block at level k + 1, we
establish a copy Mc1.ck.(−1) ≡ Mc1.ck , such that the
first access to M in the block may access its last assignment
of M via Mc1.ck.(−1). Similarly, the last assignment of a
variable in the inner block is passed back to the outer block
by copying the last identifier of an inner block to the next
identifier of the outer block.

Example 3. Consider the following user language program
(left) and its translation to an event program (right).

1: M = 7 A: M0 ≡ 7
2: M = M+2 B: M1 ≡M0 + 2
3: for i in range(0,2): C: M1.−1 ≡M1

D: ∀i in 0..1 :
4: M = M+i E: M1.(2i) ≡M1.(2i−1) + i
5: for j in range(0,3): F: M1.(2i).−1 ≡M1.(2i)

G: ∀j in 0..2 :
6: M = M+1 H: M1.(2i).j ≡M1.(2i).(j−1) + 1

I: M1.(2i+1) ≡M1.(2i).2

J: M2 ≡M1.(2·1+1)

7: M = M+1 K: M3 ≡M2 + 1

The program has three nested blocks. Within each block,
the respective counter is incremented for each assignment of
M : M0, . . . ,M3 for the outermost block, M1.0, . . . ,M1.3 in
the second block, and M1.(2i).0, . . . ,M1.(2i).2 for the inner-
most block. The encodings for entering and leaving a block
are in lines C and F, and lines I and J, respectively. 2

Translation of arrays. Since arrays in user language pro-
grams have a known fixed size, their translation is straight-
forward: A k-dimensional array M [n1], . . . , [nk] translates
to
∏
i ni distinct identifiers M0,...,0, . . . ,Mn1−1,...,nk−1.

Translation of reduce_*. According to the grammar in
Figure 4, reduce operations can only be applied to anony-
mous arrays created by list comprehension. The expression
reduce_and([EXPR for ID in range(FROM, TO) if COND]

is translated to the Boolean event
∧TO−1

ID=FROM COND∧EXPR.
Symmetrically, reduce_or translates to

∨
, reduce_sum to∑

, and reduce_mult to
∏

. A call to reduce_count([EXPR
for ID in range(FROM, TO) if COND]) translates to the

event
∑TO−1

ID=FROM COND⊗ 1.

4. PROBABILITY COMPUTATION
The probability computation problem is #P-hard already

for simple events representing propositional formulas such as
positive bipartite formulas in disjunctive normal form [26].
In ENFrame, we need to compute probabilities of a large
number of interconnected complex events. Although the
worst-case complexity remains hard, we attack the problem
with three complementary techniques: (1) bulk-compile all
events into one decision tree while exploiting the structure
of the events to obtain smaller trees, (2) employ approxi-
mation techniques to prune significant parts of the decision
tree, and ultimately (3) distribute the compilation by as-
signing distinct distributed workers to explore disjoint parts
of the tree.

Algorithm 1: Exact and approx. compilation of network

� Blue comments and pseudocode are related to ε-approx.
Compile(network D, absolute error ε)

� Initialise initial (empty) masks for nodes in the network
foreach vi ∈ D do M [vi]← unknown
foreach ti ∈ targets(D) do
ti.problower ← 0 � initial probability lower bound: 0
ti.probupper ← 1 � initial probability lower bound: 1
B[ti]← 2ε � error budget (for exact, ε = 0)

dfs(D,M, { }, B) � empty DFS branch ν = { }, Pr(ν) = 1

dfs(network D, masks M , branch ν, error budgets B)
if ∀ti ∈ targets(D) : B[ti] ≥ Pr(ν) then � sufficient budget

foreach ti ∈ T do B′[ti]← B[ti]− Pr(ν); � to trim branch ν
return B′

if ν 6= ∅ then � propagate variable mask into DAG
M [top(ν).var]← top(ν).val
M ← mask(D,M, top(ν).var , null,Pr(ν))

if ∀ti ∈ targets(D) : (ti.probupper− ti.problower ≤ 2ε or
M [ti] 6= unknown) then return B ; � all reached/approx.

x← nextVariable(ν)

� error budget for left DFS-branch
foreach ti ∈ targets(D) do Bleft[ti]←

B[ti]

2

� DFS left branch, storing the residual error budget B′left
B′left ← dfs (D,Mleft, [ν, x 7→ true], Bleft)

� compute error budget for right DFS-branch B′left
foreach ti ∈ targets(D) do Bright[ti]←

B[ti]

2 + B′left[ti] if

∃ti ∈ targets(D) : ti.probupper− ti.problower > 2ε then
� right branch (pass error budget, returns residual budget)
return dfs(D,Mright, [ν, x 7→ false], Bright)

else
� all probability bounds reached ε-approx., no right DFS
return Bright

We next introduce the bulk-compilation technique, look
at three approximation approaches, and discuss how to dis-
tribute the probability computation.

4.1 Compilation of event programs
The event programs consist of interconnected events which

are represented in an event network : a graph representation
of the event programs, in which nodes are, e.g., Boolean
connectives, comparisons, aggregates, and c-values.

The goal is to compute probabilities for the top nodes
in the network, which are referred to as compilation targets.
These nodes represent events such as“object oi is assigned to
cluster Cj in iteration t”. We keep lower and upper bounds
for the probability of each target. Initially, these bounds are
[0, 1] and they eventually converge during computation.

The bulk-compilation procedure is based on Shannon ex-
pansion: select an input random variable x and partially
evaluate each compilation target Φ to Φ|x for x being set
to true (>) and Φ|¬x for x being set to false (⊥). Then,
the probability of Φ is defined by Pr[Φ] = Pr[x] · Pr[Φ|x] +
Pr[¬x] · Pr[Φ|¬x]. We are now left with two simpler events
Φ|x and Φ|¬x. By repeating this procedure, we eventually
resolve all variables in the events to the constants true or
false. The trace of this repeated expansion is the decision
tree. We need not materialise the tree. Instead, we just
explore it depth-first and collect the probabilities of all vis-
ited branches as well as record for each event Φ the sums
L(Φ) and N(Φ) of probabilities of those branches that satis-
fied and respectively did not satisfy the event. At any time,
L(Φ) and 1−N(Φ) represent, respectively, a lower and upper
bound on the probability of Φ. This compilation procedure
needs time polynomial in the network size (and in the size
of the input data set), yet in worst case (unavoidably) ex-
ponential in the number of variables used by the events.

For practical reasons, we do not construct Φ|x and Φ|¬x

x0 x1 x2 x3

Φ(o0) : ∨ Φ(o1) Φ(o2) Φ(o3) : ∧

M0 : Σ M1 : Σ

InCl0,0 : ∧ InCl1,0 : ∧ InCl1,3 : ∧

Figure 5: Simplified example of an event network.

explicitly, but keep minimal information that, in addition
to the network, can uniquely define them. The process
of computing this minimal information is called masking.
We achieve this by traversing the network bottom-up and
recording the nodes that become true or false given the val-
ues of their children. When a compilation target t is even-
tually masked by a variable assignment ν, the probability
Pr(ν) is added to its lower bound if ν(t) = >, or subtracted
from its upper bound if ν(t) = ⊥. If one or more targets are
left unmasked, a next variable x′ is chosen and the process
is repeated with ν′ = ν ∪ {x′ 7→ c}, where c is either > or
⊥. The algorithm chooses a next variable x′ such that it
influences as many events as possible.

Once all compilation targets are masked by an assignment
ν, the compilation backtracks and selects a different assign-
ment for the most recently chosen variable whose assign-
ments are not exhausted. If all branches of the decision tree
have been investigated, the probability bounds of the targets
have necessarily converged and the algorithm terminates.

Example 4. Figure 5 shows a simplified event network un-
der the assignment {x0 7→ >, x1 7→ >}. The masks of x0

and x1 have propagated to event nodes Φ(o0), Φ(o1), Φ(o3),
which are also masked. The red nodes are masked for ⊥,
whereas the green nodes are masked >. 2

Algorithm 1 gives the pseudocode for the DFS-traversal
of the decision tree. The blue lines are necessary for approx-
imate probability computation and will be explained later.
Compilation starts with an empty branch (variable assign-
ment) ν; the mask values M [vi] and probability bounds for
all nodes in the event network are initialised. The error
budgets B[ti] for the targets are set to 0 for exact compu-
tation. After the initialisation, the dfs procedure is called
using ν = { }. The procedure selects the first variable x
and recursively calls itself using two newly created branches
of the decision tree: one with ν = {x 7→ >} and one with
ν = {x 7→ ⊥}. These branches are propagated into the
event network using the Mask procedure. If every target is
reached, dfs returns. Otherwise, it selects a next variable x
and recursively calls dfs on the two new tree branches.

Algorithm 2 performs mask propagation: a variable as-
signment (mask) M is inserted into the network, and the
variable node propagates the mask to its parents. Depending
on the node, its mask is either updated and propagated, or
propagation is stopped in case the node cannot be masked.

Convergence of the algorithm (e.g., clustering) can be de-
tected by comparing the mask values at network nodes corre-
sponding to iteration t with the masks of nodes for iteration
t+ 1. If none of the mask assignments has changed between
iterations, then the algorithm has converged.

4.2 Bounded-range loops in event networks
Event programs can contain bounded-range loops for it-

erative algorithms. ENFrame offers two ways of encoding
such loops in an event network: unfolded, in which case
the events at any loop iteration are explicitly stored as dis-

tinct nodes in the network, or a more efficient folded ap-
proach in which all iterations are captured into a single set
of nodes. The compilation of the network then involves
looping. The pseudocode in Algorithms 1 and 2 assumes
unfolded event networks. They need minor modifications to
work on folded networks: the mask data structure M be-
comes two-dimensional to be able to store the mask for a
node v at any iteration t (M [t][v]), the dfs procedure needs
an additional parameter t for the current compilation it-
eration, and the network requires an additional node c to
perform the transition from iteration t to iteration t + 1.
The extra logic required for the mask function is:

case O � loop node
M [t+ 1][c]←M [t][v] � carry over mask to next iteration
t← t+ 1 � increase iteration counter

Additionally, probability bounds of compilation targets
should only be updated if t is the last iteration, and propa-
gation should only take place if t is not the last iteration.

4.3 Approximation with error guarantees
The compilation procedure can be extended to achieve

an anytime absolute ε-approximation with error guarantees.
The idea is to stop the probability computation as soon as
the bounds of all compilation targets are sufficiently tight.

Definition 2. Given a fixed error 0 ≤ ε ≤ 1 and events
(t0, . . . , tn−1) with probabilities (p0, . . . , pn−1), an absolute
ε-approximation for these events is defined as a tuple
(p̂0, . . . , p̂n−1) such that ∀0 ≤ i < n : pi − ε ≤ p̂i ≤ pi + ε. 2

The compilation of the network yields probability bounds
([L0, U0], . . . , [Ln−1, Un−1]) for the targets (t0, . . . , tn−1). It
can be easily seen that an absolute ε-approximation can be
defined by any tuple (p̂0, . . . , p̂n−1) such that ∀0 ≤ i < n :
Ui − ε ≤ p̂i ≤ Li + ε. We thus need to run the algorithm
until Ui − Li ≤ 2ε for each target ti.

There exist multiple strategies for investing this 2ε error
budget for every target. We next discuss three such strate-
gies. The lazy scheme follows the exact probability com-
putation approach and stops as soon as the bounds become
tight enough. Effectively, this results in investing the entire
error budget into the rightmost branches of the decision tree.
The eager scheme spends the entire error budget as soon as
possible, i.e., on the leftmost branches of the decision tree,
and then continues as in the case of exact computation. At
each node in the decision tree, the hybrid scheme divides
the current error budget equally over the two branches. Any
unused error budget is transferred to the next branch.

The blue lines in Algorithm 1 show how the dfs procedure
can be extended to support anytime absolute ε-approxima-
tion with error guarantees using the hybrid scheme. The
dfs procedure is called using a non-zero error budget 2ε,
and it assigns half of the budget to the newly created left
branch of the decision tree. The recursive dfs call returns
the residual error budget of each target, which is then added
to the budget for the right branch.

Other approximation techniques can be added to ENFrame,
e.g., the randomised ε-approximation Oracle average, and
probability computation using top-k most probable worlds.

4.4 Distributed probability computation
By splitting the task of exploring the decision tree in a

number of jobs, the compilation can be performed concur-
rently by multiple threads or machines. A worker explores
a tree fragment of a given maximum size. For simplicity,
we define the size of a job to be the depth d of the sub-tree

Algorithm 2: Masking of nodes in an event network

Mask(network D, masks M , node v, child c, prob p)
switch v.nodetype do

case ¬ : M [v]← ¬M [c]; � M [c] ∈ B, M [v] ∈ B
case ∧ � M [c] ∈ B, M [v] ∈ B

if M [c] = false then M [v]← false else if
∀ci ∈ v.children : M [ci] = true then M [v]← true

case ∨ � M [c] ∈ B, M [v] ∈ B
if M [c] = true then M [v]← true else if
∀ci ∈ v.children : M [ci] = false then M [v]← false

case ⊗ � c-value: M [c] ∈ B, M [v] ∈ R
� update lower or upper bound of c-value (R)
if M [c] = true then M [v].lower ← v.val
M [v].upper ←M [v].lower

case Σ � sum of c-values: M [c] ∈ R, M [v] ∈ R
� update lower or upper bound of c-values (R)
M [v].lower ←M [v].lower +M [c].lower
M [v].upper ←M [v].upper − (c.val−M [c].lower)

case < � M [c] ∈ R, M [v] ∈ B
if v.left.upper < v.right.lower then M [v]← true else
v.left.lower ≥ v.right.upper M [v]← false

if (M [v] ∈ B and M [v] 6= unknown) or M [v] ∈ R then
if v ∈ targets(D) then � update prob. bounds of target

if M [v] = true then v.problower ← v.problower + p else
v.probupper ← v.probupper − p

� propagate mask to parents of v
foreach pi ∈ v.parents do

� check whether pi is already fully masked
if (M [pi] ∈ B and M [pi] = unknown) or

(M [pi] ∈ R and M [pi].upper 6= M [pi].lower) then
M ←mask(D,M, pi, v, p)

return M

to explore. The computation then proceeds as follows. One
worker explores the tree from the root and every time it
reaches depth d, it forks a new job that continues from that
node as its root. Given that the maximum depth of the tree
is the number of variables m, the number of jobs created is

at most
dm
d
e−1

Σ
i=0

2i·d, where the cost of each job would propa-

gate at most 2d variable valuations ν into the event network.
Each job incurs the cost of communicating the mask at job
creation and the probability bounds for each target at the
end of the job. In case of approximation, the error budgets
need to be synchronised both at the start and end of a job.

5. EXPERIMENTAL EVALUATION
This section describes an experimental evaluation of clus-

tering probabilistic data using ENFrame. The focus of this
evaluation is a preliminary benchmark of the performance of
the probability computation algorithms introduced in Sec-
tion 4. At the end of this section, we comment on further
experimental considerations that could not be included in
full due to space limitations.

Data. We use a data set describing network load and
occurrences of partial discharge in energy distribution net-
works [22]. This data is gathered from two different types
of sensors: partial discharge sensors installed on switchgear
and cables in substations of the distribution network, and
network load sensors in substations. We aggregate the num-
ber of partial discharge occurrences over the duration of an
hour and subsequently pair this value with the average net-
work load during that hour. Clustering can assist in detect-
ing anomalies and predicting failures in the energy networks.

Uncertainty. Our goal is to show that ENFrame can
deal with common correlations patterns that occur in prob-
abilistic data [3, 28, 29]. Each data point is associated
with an event described by Boolean random variables, whose

probabilities for true are chosen at random from the range
[0.5, 0.8]. Different values would make the probabilities of
clustering events too close to 0 or 1 which are then easily
approximable. The experiments were carried out using three
types of correlations to illustrate ENFrame’s capability to
process arbitrarily correlated data.

The positive correlations scheme yields events such that
two data points are either positively correlated or indepen-
dent. Each event is a disjunction of l distinct positive liter-
als. In the mutex correlations scheme, the data points are
partitioned in mutex sets of cardinality (at most) m: any
two points are mutually exclusive within a mutex set and
independent across the sets. The conditional correlations
scheme expresses uncertainty as a Markov chain, using one
node per data point. Let Φi be the event that the data point
oi exists. The event Φi+1 becomes (Φi∧xt

i+1)∨(¬Φi∧xf
i+1);

it is a disjunction of two events, for the cases that oi exists or
not. We thus introduce two new Boolean random variables
xt
i+1 and xf

i+1 per data point oi+1. For every correlation
scheme, a group size of 4 has been used, i.e. data points
were divided in groups with identical lineage. This is re-
alistic for uncertain time-series sensor data: readings from
a small time window have identical correlations and uncer-
tainty. Additionally, we show experiments with a varying
fraction of certain data points.

ENFrame algorithms. We report on performance bench-
marks for k-medoids clustering on the energy network data
set, comparing ENFrame to naı̈ve clustering and clustering
in the top-k worlds. The naı̈ve approach computes a cluster-
ing by explicitly iterating over all possible worlds. We show
the performance of multiple probability computation algo-
rithms of ENFrame: the sequential exact approach, three
sequential approximation schemes (eager, lazy, hybrid),
and distributed hybrid approximation (hybrid-d). All ap-
proximation algorithms are set to compute probabilities with
an (absolute) error of at most ε = 0.1, the compilation tar-
gets are the events that represent medoid selection.

The literature describes both existing platforms for pro-
cessing of uncertain data and various algorithms for cluster-
ing of uncertain data. Only the newest version of SPROUT
supports a form of conditional values, yet only for query
evaluation; no other probabilistic DBMS (including MCDB,
MayBMS) provides this functionality, which makes it impos-
sible to compare ENFrame to any of the platforms described
in Section 6. In addition, work on probabilistic clustering
only considers basic uncertainty models based on indepen-
dence. Those algorithms might outperform our sequential
algorithms, at the cost of producing an output that can be
arbitrarily off from the golden standard of clustering in ev-
ery possible world. None of the prototypes was available for
testing at the time of writing.

Setup. The experiments were carried out on an Intel
Xeon X5660/ 2.80GHz machine with 4GB of RAM, running
Ubuntu with Linux kernel 3.5. The timings reported for
hybrid-d were obtained by simulating distributed computa-
tion on a single machine. The algorithms are implemented
in C++ and compiled using GCC 4.7.2. Each plot in Fig-
ures 6 and 7 depicts average performance with min/max
ranges of five runs with randomly generated event expres-
sions, different probabilities, and three clustering iterations
(using Euclidean distance).

Sequential algorithms. Figures 6 and 7 show that all of
ENFrame’s probability computation algorithms outperform
the naı̈ve algorithm by up to six orders of magnitude for
each data set with more than 10 variables. Furthermore, the

10 20 30 40 50
10−1

100

101

102

103

timeout = 3600 sec.

Number of variables (v)

W
a
ll
-c

lo
c
k

t
im

e
in

s
e
c
.

(
lo

g
)

Performance of näıve, exact and hybrid approx;
positive correlations (l = 8, f = fraction of data set)

f = 100%

f = 50%

näıve

exact

hybrid

lazy

eager

hybrid-d

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
10−3

10−2

10−1

100

101

102

103
timeout = 3600 sec.

Fraction of points from complete IPEC data set (f, 100% = 1300)

W
a
ll
-c

lo
c
k

t
im

e
in

s
e
c
.

(
lo

g
)

Performance of lazy, eager, and hybrid approx;
positive correlations (l = 8, ε = 0.1)

v = 10 v = 30 v = 50
lazy

eager
hybrid

Figure 6: Positively correlated data. On the left: scalability in terms of variables, on the right: scalability of
approximations in terms of size of the data set (hybrid-d not shown for visibility).

50

100

N
u
m

b
e
r

o
f

v
a
r
ia

b
le

s
(
v
,

g
r
e
y
)

35 100 200 300 400 500

10−3

10−2

10−1

100

101

102

103
timeout = 3600 sec.

Number of objects (n)

W
a
ll
-c

lo
c
k

t
im

e
in

s
e
c
.

(
lo

g
)

Performance of näıve, exact and hybrid approx;
mutex correlations (m = 12)

50

100

N
u
m

b
e
r

o
f

v
a
r
ia

b
le

s
(
v
,

g
r
e
y
)

35 100 200 300 400 500

10−3

10−2

10−1

100

101

102

103
timeout = 3600 sec.

Number of objects (n)

W
a
ll
-c

lo
c
k

t
im

e
in

s
e
c
.

(
lo

g
)

Performance of näıve, exact and hybrid approx;
mutex correlations (m = 12)

20

40

60

N
u
m

b
e
r

o
f

v
a
r
ia

b
le

s
(
v
,

g
r
e
y
)

20 30 40 50 60 70 80 90

10−3

10−2

10−1

100

101

102

103
timeout = 3600 sec.

Number of objects (n)

W
a
ll
-c

lo
c
k

t
im

e
in

s
e
c
.

(
lo

g
)

Performance of näıve, exact and hybrid approx;
conditional correlations

Figure 7: Mutex and conditionally correlated data (legend: see Fig. 6). Algorithms eager and lazy overlap
with exact, and are not shown. Grey dashed line indicates number of variables.

hybrid approximation can be up to four orders of magnitude
faster than exact computation. Indeed, for a very small
number of possible worlds (i.e., a small number of variables),
it pays off to cluster individually in each world and avoid
the overhead of the event networks. For a larger number of
worlds, our exact and approximate approaches are up to six
orders of magnitude faster. The naı̈ve method times out for
over 25 variables in every correlation scheme.

The reason why our approximation schemes outperform
exact is as follows. For a given depth d, there are up to 2d

nodes in the decision tree that contribute to the probability
mass of a node in the event network. The contributed mass
decreases exponentially with an increase in depth, suggest-
ing that most nodes in the decision tree only contribute a
small fraction of the total mass. Depending on the desired
error bound, a shallow exploration of the decision tree could
be enough to obtain a sufficiently large probability mass.

Among the approximation algorithms, hybrid performs
best; it outperforms exact by up to four orders of magnitude
since it does only need to traverse a shallow prefix of the
decision tree. The algorithm invests the error budget over
the entire width of the decision tree, cutting branches of the
tree after a certain depth. The other two methods (eager
and lazy) use the budget to respectively cut the first and
last branches, while exploring other branches in full depth.

For positive correlations, lazy performs very well, because
the decision tree is very unbalanced under this scheme. The
left branches of the tree correspond to variables being set
to true, which quickly satisfy the (disjunctive) input events
and allow for compilation targets to be reached. Further to
the right, branches correspond to variables being set to false.
More variables need to be set to (un)satisfy the disjunctive
input event, thus leading to longer branches. The lazy algo-
rithm saves the error budget until the very last moment and
can therefore prune the deep branches whilst maintaining
the ε-approximation. The decision trees for the mutex and
conditional correlation schemes are more balanced, result-

ing in both lazy and eager to perform almost identically to
exact. Hence, they are not shown in Figure 7.

Distributed algorithms. By distributing the probability
computation task, we can significantly increase ENFrame’s
performance. Figures 6 and 7 show the timings for hybrid-d
using w = 16 workers and job size d = 3. For all correlation
schemes, hybrid-d gets increasingly faster than hybrid as
we increase the number of variables. For small numbers of
variables, the overhead of distribution does not pay off. The
benefits are best seen for mutex correlations and over 100
objects (over 60 variables), where hybrid-d becomes more
than one order of magnitude faster than hybrid. For read-
ability reasons, the performance of hybrid-d is not depicted
in Figure 6 (right); its performance is up to one order of mag-
nitude better than hybrid, as can be seen in Figure 6. For
ten variables, there is only a small performance gain when
compared to the single-threaded hybrid approximation: the
decision tree remains small, as is the number of jobs that can
be generated. However, for 30 and 50 variables, hybrid-d
yields a performance improvement of more than one order
of magnitude over hybrid.

Figure 10 shows the influence of the number of workers
on hybrid-d’s performance for varying job sizes. A job is
the work unit allocated to a worker at any one time; a size
of d means that the worker has to explore a fragment of the
decision tree of depth at most d and would need to traverse
the event network at most 2d times. For large job sizes,
the overall number of jobs decreases; in the case of positive
correlations, the number of jobs of size 9 is small since the
decision tree is very unbalanced and only a few branches on
the right-hand side of the tree grow deeper than nine vari-
ables. Therefore, increasing the number of workers would
not help; indeed, there is no improvement for more than
four workers for job sizes larger than 5. However, for a job
size of 3, up to 16 workers can still be beneficial. In our
experiment, smaller job sizes led to a performance gain of
up to one order of magnitude, since they allow for a more

2,000 4,000 6,000 8,000 10,000 12,000

100

101

102

103

timeout = 3600 sec.

Number of objects (n)

W
a
ll
-c

lo
c
k

t
im

e
in

s
e
c
.

(
lo

g
) (positive correlations, l = 8, v = 30, c = percentage of certain objects)

c = 0%

c = 95%

Figure 8: Performance of hybrid(-d) on large-scale
generated data sets with certain data points.

1 5 10 100 1000 10000 100000

0

0.2

0.4

0.6

k: top-k worlds

P
A

P
M

(mutex correlations, n = 80, v = 20)

PAPM(näıve, top-k)

PAPM(näıve, hybrid ε = 0.1)

PAPM(näıve, exact)

Figure 9: Accuracy experiment: comparing naı̈ve
(golden standard) to exact, hybrid, and top-k worlds.

equal distribution of the work over the available workers.
Synchronisation did not play a significant role in our setup.

Certain data points. Figure 8 shows that performance
improves as the number of certain data points (objects that
occur in all possible worlds) increases. The speed-up in
such cases is explained by the fact that the distance sums
of medoids to data points in a cluster become less complex
and can be initialised using the distances to objects that cer-
tainly exist. Consequently, fewer variables assignments are
needed to decide on a cluster medoid, resulting in a shallower
decision tree and a speedup in the compilation time.

Clustering accuracy. We investigated the accuracy
of ENFrame versus clustering in the top-k most probable
worlds and naı̈ve clustering. We consider the latter as
golden standard, since it respects correlations and does not
introduce errors due to approximations of probabilities. To
this end, we developed an external evaluator for clustering
of uncertain data: the pairwise assignment probability met-
ric (PAPM). Cluster evaluation using pairwise object assign-
ments is a well-described technique for deterministic cluster-
ings, and is used for the Rand measure [27]. PAPM(C1, C2)
compares two clustering results C1, C2 using the probabil-
ity that pairs of distinct objects oa, ob are assigned to the
same cluster (pairwise assignment probability: Pr[oa ∼ ob]).
PAPM reports the maximum difference in this probability
between C1 and C2 over all pairs of objects:

PAPM(C1, C2) = max
oa,ob

∣∣PrC1 [oa ∼ ob]− PrC2 [oa ∼ ob]
∣∣

Figure 9 experimentally confirms that the accuracy of
ENFrame’s exact clustering is equal to the golden standard
of clustering in all possible worlds (naı̈ve). The accuracy of
clustering in the top-k most probable worlds if far off from
the golden standard, even for large k. Already for k > 1000,
ENFrame outperforms top-k clustering (not shown in this
figure). As expected, the difference between hybrid and
naı̈ve never exceeds 0.1. The data set for this experiment
was restricted due to the limited scalability of naı̈ve.

A more extensive accuracy comparison is out of scope of
this paper, but is part of future work. A common approach
to assess the accuracy measure of a probabilistic method like
ours, is to assume a notion of ground truth. It is unclear how
to deal with probabilistic data which represents inherently

1 5 10 15 20

5

10

15

20

Number of workers (w)

W
a
ll
-c

lo
c
k

t
im

e
in

s
e
c
.

(positive correlations, n = 1000, v = 30, ε = 0.1)

job size: 3
job size: 6
job size: 9

Figure 10: Performance of distributed probabil-
ity computation as function of number of workers.

contradictory information for which no ground truth exists
or is known. In turn, we proposed PAPM, which takes cor-
relations and probabilities into account.

Further findings. We have investigated the influence of
the number of dimensions, data point coordinates, the error
budget, the numbers of iterations, and alternative clustering
compilation targets on the performance of ENFrame, as well
as its total memory usage. As is the case with k-medoids on
certain data, the number of dimensions has no influence on
the computation time. The reported performance gap be-
tween exact and hybrid shows that performance is highly
sensitive to the error budget. The number of iterations has a
linear effect on the running time of the algorithm. The num-
ber of targets (including those representing co-occurrence
queries) has a minor influence on performance; due to the
combinatorial nature of k-medoids, events are mostly sat-
isfied in bulk and it is thus very rare that one event alone
is satisfied at any one time. This also explains why experi-
ments with other types of compilation targets (e.g., object-
cluster assignment, pairwise object-cluster assignment) show
very similar performance. In our experiments, the size of the
event networks grows linearly in the number of objects and
clusters and the memory usage of ENFrame is under 1GB.

6. RELATED WORK
Our work is at the confluence of several research areas:

probabilistic data management, data analytics platforms,
and provenance data management. A key aspect that dif-
ferentiates ENFrame from the algorithms and platforms de-
scribed in this section, is the probabilistic and correlated na-
ture of input data and the entire processing pipeline. This
calls for tailored algorithms. As a platform for expressing
algorithms to process uncertain data, ENFrame goes beyond
any of the single data mining algorithms described here.

Probabilistic data mining and querying. Our work
adds to a wealth of literature on this topic [1, 29] along two
directions: distributed probability computation techniques
and a unified formalisation of several clustering algorithms
in line with work on probabilistic databases.

Distributed probability computation has been approached
only in the context of the SimSQL/MCDB system, where
approximate query results are computed by Monte Carlo
simulations [17, 7]. This contrasts with our approach in
that MCDB was not designed for exact and approximate
computation with error guarantees and does not exploit cor-
relations allowed by pc-tables and ENFrame.

Early approaches to mining uncertain data are based on
imprecise (fuzzy) data, for example using intervals, and pro-
duce fuzzy (soft) and hard output. Follow-up work shifted
to representation of uncertainty by (independent) probabil-
ity density functions per data point. In contrast, we allow
for arbitrarily correlated discrete probability distributions.
The importance of correlations has been previously acknowl-

edged for clustering [32] and frequent pattern mining [30].
A further key aspect of our approach that is not shared by
existing uncertain data mining approaches is that we follow
the possible worlds semantics throughout the whole min-
ing process. This allows for exact and approximate com-
putation with error guarantees and sound semantics of the
mining process that is compatible with probabilistic data-
bases. This cannot be achieved by existing work; for in-
stance, most existing k-means clustering approaches for un-
certain data define cluster centroids using expected distances
between data points [8, 25, 12, 20, 14, 18] or the expected
variance of all data points in the same cluster [13]; they also
compute hard clustering where the centroids are determin-
istic. The recently introduced UCPC approach to k-means
clustering [15] is the first work to acknowledge the impor-
tance of probabilistic cluster centroids. However, it assumes
independence in the input and does not support correlations.

Data analytics platforms. Support for iterative pro-
grams is essential in many applications including data min-
ing, web ranking, graph analysis, and model fitting. This has
recently led to a surge in data-intensive computing platforms
with built-in iteration capability. REX supports iterative
distributed computation along database operations in which
changes are propagated between iterations [23]. MADlib is
an open-source library for in-database analytics [16]. Sim-
ilarly, Bismarck is an architecture for in-database analyt-
ics [9]. GraphLab [21] uses graph representations for scalable
parallel programming. The Iterative Map-Reduce-Update
programming abstraction for machine learning compiles pro-
grams into declarative Datalog code [6]. Infer.NET [24] orig-
inates from the programming languages community, but has
a closed nature with restricted availability.

Provenance in database and workflow systems. To
enable probability computation, we trace fine-grained prove-
nance of the user computation. This is in line with a wealth
of work in probabilistic databases [29]. Our event language
is influenced by work on provenance semirings [11] and semi-
modules [4, 10] that capture provenance for positive queries
with aggregates in relational databases. The construct Φ⊗v
resembles the algebraic structure of a semimodule that is a
tensor product of the Boolean semiring B[X] freely generated
by the variable set X and of the SUM monoid over the real
numbers R. There are two differences between our construct
and these structures. Firstly, we allow negation in events,
which is not captured by the Boolean semiring. Secondly,
even for positive events, B[X]⊗R is not a semimodule since
it violates the following law: (Φ1∨Φ2)⊗v = Φ1⊗v+Φ2⊗v.
Indeed, under an assignment that maps both Φ1 and Φ2 to
>, the left side of the equality evaluates to v, whereas the
right side becomes v + v. Furthermore, our event language
allows to define events via iterations, as needed to succinctly
trace data mining computation.

7. REFERENCES
[1] C. Aggarwal. Managing and Mining Uncertain Data.

Kluwer, 2009.
[2] C. Aggarwal and C. Reddy. Data Clustering: Algorithms

and Applications, chapter A Survey of Uncertain Data
Clustering Algorithms. Chapman and Hall, 2013.

[3] P. Agrawal, O. Benjelloun, A. D. Sarma, C. Hayworth,
S. Nabar, T. Sugihara, and J. Widom. Trio: A system for
data, uncertainty, and lineage. In VLDB, 2006.

[4] Y. Amsterdamer, D. Deutch, and V. Tannen. Provenance
for aggregate queries. In PODS, 2011.

[5] N. Bakibayev, T. Kocisky, D. Olteanu, and J. Zavodny.
Aggregation and ordering in factorised databases. PVLDB,
2013.

[6] V. R. Borkar, Y. Bu, M. J. Carey, J. Rosen, N. Polyzotis,
T. Condie, M. Weimer, and R. Ramakrishnan. Declarative
systems for large-scale machine learning. Data Eng. Bull.,
2012.

[7] Z. Cai, Z. Vagena, L. Perez, S. Arumugam, P. J. Haas, and
C. Jermaine. Simulation of database-valued markov chains
using SimSQL. In SIGMOD, 2013.

[8] M. Chau, R. Cheng, B. Kao, and J. Ng. Uncertain data
mining: An example in clustering location data. In
PAKDD, 2006.

[9] X. Feng, A. Kumar, B. Recht, and C. Ré. Towards a unified
architecture for in-RDBMS analytics. In SIGMOD, 2012.

[10] R. Fink, L. Han, and D. Olteanu. Aggregation in
probabilistic databases via knowledge compilation.
PVLDB, 5(5), 2012.

[11] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance
semirings. In PODS, 2007.

[12] F. Gullo, G. Ponti, and A. Tagarelli. Clustering uncertain
data via k-medoids. In SUM, 2008.

[13] F. Gullo, G. Ponti, and A. Tagarelli. Minimizing the
variance of cluster mixture models for clustering uncertain
objects. In ICDM, 2010.

[14] F. Gullo, G. Ponti, A. Tagarelli, and S. Greco. A
hierarchical algorithm for clustering uncertain data via an
information-theoretic approach. In ICDM, 2008.

[15] F. Gullo and A. Tagarelli. Uncertain centroid based
partitional clustering of uncertain data. PVLDB, 2012.

[16] J. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang,
E. Fratkin, A. Gorajek, K. S. Ng, C. Welton, X. Feng,
K. Li, and A. Kumar. The MADlib analytics library or
MAD skills, the SQL. PVLDB, 5(12), 2012.

[17] R. Jampani, F. Xu, M. Wu, L. Perez, C. Jermaine, and
P. Haas. The Monte Carlo Database System: Stochastic
analysis close to the data. ACM TODS, 36(3), 2011.

[18] B. Kao, S. Lee, F. Lee, D. Cheung, and W. Ho. Clustering
uncertain data using Voronoi diagrams and R-Tree index.
TKDE, 2010.

[19] C. Koch and D. Olteanu. Conditioning probabilistic
databases. In VLDB, 2008.

[20] H. Kriegel and M. Pfeifle. Density-based clustering of
uncertain data. In SIGKDD, 2005.

[21] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin,
and J. Hellerstein. Graphlab: A new parallel framework for
machine learning. In UAI, July 2010.

[22] M. Michel and C. Eastham. Improving the management of
MV underground cable circuits using automated on-line
cable partial discharge mapping. In CIRED, 2011.

[23] S. Mihaylov, Z. Ives, and S. Guha. REX: Recursive,
delta-based data-centric computation. PVLDB, 5(11), 2012.

[24] T. Minka, J. Winn, J. Guiver, and D. Knowles. Infer.NET
2.5, 2012. Microsoft Research Cambridge.

[25] W. Ngai, B. Kao, C. Chui, R. Cheng, M. Chau, and K. Yip.
Efficient clustering of uncertain data. In ICDM, 2006.

[26] J. Provan and M. Ball. The complexity of counting cuts
and of computing the probability that a graph is connected.
SIAM Journal on Computing, 12(4), 1983.

[27] W. Rand. Objective Criteria for the Evaluation of
Clustering Methods. Journal of ASA, 1971.

[28] P. Sen and A. Deshpande. Representing and querying
correlated tuples in probabilistic databases. In ICDE, 2007.

[29] D. Suciu, D. Olteanu, C. Ré, and C. Koch. Probabilistic
Databases. Morgan & Claypool, 2011.

[30] L. Sun, R. Cheng, D. W. Cheung, and J. Cheng. Mining
uncertain data with probabilistic guarantees. In KDD, 2010.

[31] S. van Dongen. Graph clustering by flow simulation. PhD
thesis, University of Utrecht, 2000.

[32] P. B. Volk, F. Rosenthal, M. Hahmann, D. Habich, and
W. Lehner. Clustering uncertain data with possible worlds.
In ICDE, 2009.

	Introduction
	ENFrame's User Language
	Clustering Algorithms in ENFrame
	Syntax of the User Language

	Tracing Computation by Events
	Syntax of Event Expressions
	Semantics of Event Expressions
	Probabilistic Semantics of Events
	Event Programs
	From User Programs to Event Programs

	Probability Computation
	Compilation of event programs
	Bounded-range loops in event networks
	Approximation with error guarantees
	Distributed probability computation

	Experimental evaluation
	Related Work
	References

