
Reusing Historical Interaction Data for Faster
Online Learning to Rank for IR

Katja Hofmann
k.hofmann@uva.nl

Anne Schuth
a.g.schuth@uva.nl

Shimon Whiteson
s.a.whiteson@uva.nl

Maarten de Rijke
derijke@uva.nl

ISLA, University of Amsterdam

ABSTRACT
Online learning to rank for information retrieval (IR) holds promise
for allowing the development of “self-learning” search engines that
can automatically adjust to their users. With the large amount of e.g.,
click data that can be collected in web search settings, such tech-
niques could enable highly scalable ranking optimization. However,
feedback obtained from user interactions is noisy, and developing
approaches that can learn from this feedback quickly and reliably is
a major challenge.

In this paper we investigate whether and how previously collected
(historical) interaction data can be used to speed up learning in online
learning to rank for IR. We devise the first two methods that can
utilize historical data (1) to make feedback available during learning
more reliable and (2) to preselect candidate ranking functions to
be evaluated in interactions with users of the retrieval system. We
evaluate both approaches on 9 learning to rank data sets and find
that historical data can speed up learning, leading to substantially
and significantly higher online performance. In particular, our pre-
selection method proves highly effective at compensating for noise
in user feedback. Our results show that historical data can be used
to make online learning to rank for IR much more effective than
previously possible, especially when feedback is noisy.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: H.3.3 Information Search
and Retrieval

Keywords
Information retrieval, Interleaved comparisons, Learning to Rank

1. INTRODUCTION
In recent years, learning to rank methods have become popular in

information retrieval (IR) as a means of tuning retrieval systems to
the requirements of specific search environments, groups of users,
or individual users [18]. However, most current approaches work
offline, meaning that manually annotated data needs to be collected
beforehand, and that, once deployed, the system cannot continue to
adjust to user needs, unless it is retrained with additional data.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’13, February 4–8, 2013, Rome, Italy.
Copyright 2013 ACM 978-1-4503-1869-3/13/02 ...$15.00.

An alternative setting is online learning to rank, where the sys-
tem learns directly from interactions with its users [10]. These
approaches are typically based on reinforcement learning (RL) tech-
niques [25], meaning that the system tries out new ranking functions
(also called rankers), and learns from feedback inferred from users’
interactions with the presented rankings. In contrast to offline learn-
ing to rank approaches, online approaches do not require any initial
training material, but rather automatically improve rankers while
they are being used.

A main challenge that online learning to rank for IR approaches
have to address is to learn as quickly as possible from the limited
quality and quantity of feedback that can be inferred from user
interactions. Learning speed is particularly important in terms of the
number of user interactions. The better the system’s performance
is after a smaller number of interactions, the more likely users are
to be satisfied with the system. Also, the more effective an online
learning to rank algorithm is, the more feasible it is to adapt to
smaller groups of users, or even individual users.1 Furthermore,
user feedback is limited because the learning algorithm should be
invisible to system users, i.e., feedback is inferred from natural
(noisy) user interactions.

In this paper, we address the following question: Can previously
observed (historical) interaction data be reused to speed up online
learning to rank? Current online learning to rank approaches for
IR utilize each observed data sample (consisting of a query, the
displayed results, and observed user clicks on the result list) only
once. This was necessary because, until recently, it was not clear
how feedback from previous user interactions (that were collected
with different rankers) could be reused. However, a recently devel-
oped probabilistic method for inferring relative feedback [9] has
been shown to allow data re-use [11] for ranker evaluation. It was
found to be effective for making ranker comparisons more reliable,
especially when large amounts of historical data were available.
Here, we investigate whether and how this evaluation method can
be integrated with online learning to rank approaches, and whether
and in what way these additional (historical, and possibly noisier or
biased) evaluations can lead to faster learning.

Specifically, we make the following contributions.

• We propose the first two approaches for reusing historical
data in online learning to rank for IR: reliable historical com-
parisons (RHC), which uses historical data directly to make
feedback more reliable, and candidate preselection (CPS),
which uses historical data to preselect candidate rankers.

• In extensive experiments using 9 learning to rank data sets, we
1In this paper we focus on the effectiveness of the learning algorithm,
and assume a system is used by a group of users with similar search
behavior and preferences. The question of how to form user groups
to which to adapt is orthogonal to this work.

investigate whether and how historical data reuse can speed up
online learning to rank and lead to higher online performance.
In addition to investigating our proposed methods, we analyze
the effect of noise in user feedback, and the effect of bias and
variance in ranker comparisons based on historical data.

We find that historical data can be effectively reused to speed up
online learning to rank for IR. Particularly effective is the CPS ap-
proach, which reuses historical data to preselect candidate rankers,
and can thereby compensate for noise in user feedback. Our re-
sults directly impact the effectiveness of online learning to rank
approaches, especially in settings where feedback may be noisy.

We discuss related work in §2, and detail our approaches in
§3. Our experimental setup and results are described in §4 and §5
respectively. We analyze our results in §6 and conclude in §7.

2. RELATED WORK
In this section we first give a brief overview of learning to rank

approaches for IR, with a focus on approaches for learning in an
online setting. While the reuse of previously collected data has not
been investigated in this setting, the area of off-policy evaluation in
RL is related, and is briefly reviewed as well.

Learning to rank for information retrieval is an active research
area, and many approaches have been proposed and refined in recent
years [18]. The vast majority of these learn in a supervised manner,
from manually annotated data. A number of semi-supervised ap-
proaches have been proposed more recently, which can, in addition
to expensive labeled data, take into account unlabeled sample data,
for example as a means of regularization [26].

Both supervised and semi-supervised approaches typically work
offline, meaning that labeled training data need to be collected be-
fore training (and typically, the data are assumed to be sampled
i.i.d. from some underlying distribution). Collecting training data
is often expensive and, because annotators may interpret queries
differently from actual users, it may not accurately capture users’
preferences [22]. In contrast, online methods hold the promise of
allowing learning while interacting with users of the retrieval sys-
tem [10, 28]. In this setting, no training data is required before
deploying the system (but any existing data could be used for boot-
strapping the system), and the system is expected to transparently
adapt to its users’ true preferences.

Online learning to rank for IR has been modeled as a contextual
bandit problem (also known as bandits with side information or
associative RL [15, 24]), a type of IR problem where states (i.e.,
queries) are independent of each other [2, 3]. A difference between
typical contextual bandit formulations and online learning to rank
for IR is that in IR reward cannot be observed directly. Instead,
feedback for learning can be inferred from observed user interac-
tions with the result list, e.g., clicks can be used as noisy relative
preference indications, allowing probabilistic comparisons between
documents [13], or between lists of documents [21].

Several methods for online learning to rank for IR have been
proposed. Most of these perform listwise learning, meaning that
they learn from probabilistic comparisons between pairs of candidate
rankers using [28, 29]. A first such method, Dueling Bandit Gradient
Descent (DBGD) was proposed in [28]. This method implements
stochastic gradient descent over a large or infinite space of ranking
solutions. Alternatively, algorithms based on multi-armed bandit
formulations have been developed to efficiently find the best ranking
solutions of a given set [29]. Besides listwise online learning to rank
approaches for IR, a pairwise approach was investigated in [10].
Our work is based on the listwise DBGD algorithm (cf., Section 3).

Central to the performance of DBGD is the choice of a reliable

feedback mechanism. The algorithm learns using relative feedback,
typically implemented in the form of an interleaved comparison
method (i.e., a method for inferring relative comparisons between
rankers). Previously, DBGD was evaluated with a method called
Balanced Interleave (BI) [10, 14, 21]. An alternative is the Team
Draft (TD) method, which addresses limitations of BI and proved
reliable in large-scale IR evaluation [5, 21].

Until recently, it was not clear how interleaved comparison meth-
ods could reuse historical data. However, the recently developed
Probabilistic Interleave (PI) method bridges this gap [9, 11]. PI is
based on a probabilistic interpretation of interleaved comparisons,
which allows it to infer comparison outcomes using data from ar-
bitrary result lists, even if they were obtained in comparisons of
rankers different from the current target rankers. Our approaches
for learning with historical data reuse are enabled by this evaluation
approach. To the best of our knowledge they are the first approaches
that integrate comparisons based on historical data with an online
learning to rank for IR approach.

From an RL perspective, our work is related to off-policy learn-
ing [19, 25]. Off-policy learning means that an algorithm takes
actions according to one policy but uses the resulting feedback to
learn about another policy. The PI method that forms the basis of
our approaches can be seen as a form of off-policy learning.

Work on RL approaches for information retrieval and related ar-
eas is ongoing. In particular, solutions have been proposed in the
areas of news recommendation [1, 16] and ad placement [15, 24].
Other approaches for off-policy evaluation have been developed
for applications related to IR, such as news recommendation. An
off-policy evaluation method for news recommendation [17] uses
rejection sampling to compensate for differences in how frequently
specific news articles were shown to users by the behavioral pol-
icy. However, this approach cannot be easily applied to the online
learning to rank for IR setting, because here the number of actions
(result lists) is very large so that a similar approach would require
prohibitively large amounts of data. Our methods are the first to
reuse historical data for online learning to rank in a setting where
feedback is available through interleaved comparison.

3. METHOD
In this section we detail our method for online learning to rank

for IR with re-use of historical data. First, we describe our problem
formulation (cf., §3.1), and methods for online learning (§3.2) and
for inferring feedback (§3.3) on which our work is based. Finally, we
detail our two methods for reusing historical data in online learning
to rank for IR (§3.4 and §3.5).

3.1 Problem Formulation
Our model of online learning to rank for IR follows [10]. In it, a

retrieval system repeatedly observes queries q, submitted by users
of the system. The system generates a result list r and presents it to
the user. Users interact with r, and any clicks c on result documents
are again observed by the system. The system can use the observed
q and c to update its ranking function, and is ready to observe the
next query. We assume that queries are independent of each other,
rendering the problem a contextual bandit problem (cf., §2) [2, 3].

The objective of our learning system is to optimize online per-
formance, formulated as discounted cumulative reward.2 Again
following [10] we adopt the following formulation:

C =

∞∑
t=0

γt−1rewardt(rt). (1)

2Note that reward is not directly observed by the system, but is only
used for external system evaluation.

Here, reward of the result list rt is accumulated over an infinite
number of timesteps t, and weighted by a discount factor γ ∈ [0, 1).
This means that immediate rewards are weighted higher than future
rewards. The discount factor can be interpreted such that there is
a 1 − γ probability that interactions will end after each timestep,
e.g., if users abandon the search engine. Thus, cumulative reward
weights the reward at each timestep by its probability of actually
occurring and online performance is highest for systems that present
the best rankings after the fewest user interactions.

3.2 Dueling Bandit Gradient Descent
Our baseline learning algorithm uses stochastic gradient descent

to learn a weight vector w for a linear combination of ranking
features. Given a query q and a document collectionD, the relations
between the query and each document are expressed as vectors of
ranking features X. Given a weight vector w, document scores are
obtained by s = wX. A result list for the given weight vector can
then be generated by simply sorting the documents by score.

Algorithm 1 Baseline algorithm, based on [28].
1: Input: f(l1, l2), g(δ,w), α, δ, w0, λ (default: 0)
2: h← []
3: for query qt (t← 1..∞) do
4: (w′t,ut)← g(δ,wt) // generate candidate ranker
5: l1 = generate_list(wt); l2 = generate_list(w′t)
6: (oL, r, c)← f(l1, l2)
7: if oL > 0 then
8: wt+1 ← wt + αut // update current best ranker
9: else

10: wt+1 ← wt

// maintain historical data if needed
11: if λ > 0 then
12: if len(h) = λ then
13: remove(h,h[0])
14: append(h, (r, l1, l2, c))

Algorithm 2 generate_candidate(·) (baseline method for gener-
ating candidate rankers, to be used as g(δ,w) in Algorithm 1).
1: Input: δ, w
2: Sample unit vector u uniformly.
3: w′ ← w + δu
4: return (w′,u)

To learn weight vectors for ranking, we use DBGD [28], shown
in Algorithm 1. Its first input is a comparison function f(l1, l2),
which compares two result lists l1 and l2 using user clicks c (the
return value oL ∈ R indicates whether the quality of the two lists
was inferred to be equal (oL = 0), or whether the first (oL < 0) or
second (oL > 0) list was inferred to be better; cf., 3.3). A second
function, g(δ,w) is provided to generate candidate rankers. The
remaining inputs are the step sizes α and δ, and an initial weight
vector w0. An optional parameter λ indicates the maximum amount
of most recent historic interaction data that the algorithm should
keep in memory for possible reuse. This parameter is set to 0 in the
baseline version.

The algorithm learns while interacting with search engine users as
follows. At all times, the hypothesized best solution up to this point
is maintained as wt. When a query qt is observed, a new candidate
weight vector w′t is generated using g(·) (line 4). Then, the result
lists generated for qt using wt and w′t are compared using f(l1, l2)
(lines 5-6). If w′t wins the comparison, wt is updated using the
update rule wt ← wt+αut (line 8). Otherwise, wt is not changed.

In the baseline version of this algorithm, generate_candidate(·)
is used to generate candidate weight vectors as follows (Algo-
rithm 2). First, a vector u is generated by randomly sampling a
unit vector. Then, w′ is obtained by moving w by a step of size δ in
the direction u. An alternative method of candidate selection using
historical data is presented in Section 3.5.

3.3 Probabilistic Interleave
Interleaved comparison methods are based on the observation that

user clicks are context-dependent, i.e., interpreting them as relative
feedback (in relation to surrounding documents) results in more
reliable feedback than absolute interpretations [21]. Interleaved
comparison methods aggregate clicks to obtain relative comparisons
between result rankings, such as those generated by different rankers.
Our methods for reusing historical data are based on PI [9, 11]. This
interleaved comparison method enables historical data reuse because
its probabilistic approach allows ranker comparisons using arbitrary
result lists (e.g., result lists previously shown to users that were
generated using rankers different from the ones currently compared).

Algorithm 3 Probabilistic Interleave, following [9], to be used as
f(l1, l2) in Algorithm 1
1: Input: o(r, l1, l2, c), l1, l2, τ , κ
2: r← []
3: for i(1, 2) do
4: ∀d ∈ li : Ti ← Pi(d) =

1
index(li,d)τ

Zi,d

// Zi,d is a normalization factor such that
∑

d∈li Pi(d) = 1

5: while (len(r) < κ) ∧ ((∃i : l1[i] 6∈ r) ∨ (∃i : l2[i] 6∈ r)) do
6: ls ← 1 if random_bit() else 2
7: lo ← 2 if ls = 1 else 1
8: dnext ← sample_without_replacement(Tls)
9: remove(Tlo , dnext)

10: append(r, dnext)
// present r to user and observe clicks c
// then compute the comparison outcome, e.g., using Eqs. 2–5

11: o← o(r, l1, l2, c)
12: return (o, r, c)

The baseline version of PI (without historical data) is shown
in Algorithm 3. Its first input is a comparison method o(·), that
computes a comparison outcome given an interleaved list r, original
lists l1 and l2, and observed user clicks c (optionally, historical
data h can be passed in). It also accepts the two lists l1 and l2
to be compared, a decay parameter τ , and the maximum desired
length of the interleaved result list κ. The first step is to transform l1
and l2 into probability distributions over documents Ti (lines 3–4).
The shapes of both distributions are identical and are determined
by the original result lists and τ , such that the most highly ranked
documents of an original result list are the most likely to be sampled.
These distributions are used to generate an interleaved result list
r, which ensures that all possible permutations of documents d ∈
l1 ∪ l2 can be observed with some probability P > 0.

During interleaving, the distribution to be used to contribute a
document at a given rank of the interleaved result list r is randomly
selected (lines 6–7). From the selected distribution (Tls) a document
is drawn without replacement (8). The document is removed from
the other distribution and appended to r (9–10). The process is
repeated until all documents have been added or r is filled.

The interleaved result list is then shown to the user in response
to the query and user clicks c are observed, where each entry in c
indicates whether the corresponding document in r has been clicked.
The observed clicks are used by the second step, comparison. In
this step, the comparison outcome o is computed using o(·). In the

baseline version of PI, we use the scoring function from [9]. This
approach uses knowledge of the probabilistic interleaving process
sketched above to marginalize over possible outcomes as follows.
Recall that during interleaving, distributions for contributing doc-
uments were selected randomly (lines 6–7). By observing which
distribution contributed which document (in an assignment vec-
tor a), we could obtain a comparison outcome. However, we can
obtain more reliable outcomes by marginalizing over all possible
assignments ai ∈ A that could have led to the observed r, and
weighting them by their probability P (a|r, q). This marginalized
scoring function computes outcomes as follows:

o =

|A|∑
i=1

(n(ai, c, 1)− n(ai, c, 2))P (ai|r, q). (2)

Here, n(a, c, x) is a function that returns the number of clicks that,
according to a were contributed by (the distribution based on) the
original list lx. Following [9], we compute P (a|r, q) using:

P (a|r, q) =
P (r|a, q)P (a|q)

P (r|q) (3)

P (a|q) = P (a) = |A|−1 (4)

P (r|a, q) =

len(r)∏
i=1

P (r[i]|a[r[i]], r[1, i− 1], q), (5)

where P (r[i]) denotes the probability of observing document r[i] at
rank i of the interleaved list r displayed for query q, given that it was
contributed by the list specified in assignment a[i] and documents
r[1, i− 1] were already placed on r (obtained from T1,2).

3.4 Reliable Historical Comparison
Based on DBGD and the interleaved comparison method PI, we

can now define our first approach for reusing historical data to speed
up online learning to rank. To enable this approach, we collect
historical data by setting λ > 0 in Algorithm 1. Then, we use the
collected historical data to supplement the interleaved comparisons
based on live data as shown in Algorithm 4. We call this approach
reliable historical comparison (RHC).

Algorithm 4 (RHC) Probabilistic interleaved comparison with
reuse of historical data, to be used as f(l1, l2) in Algorithm 1.
1: Input: oL(r, l1, l2, c), oH(l1, l2, r

′, l′1, l
′
2, c
′), r, l1, l2, c,

h = n× (r′i, l
′
i1 , l
′
i2 , c

′
i)

2: oL ← oL(r, l1, l2, c) // compute live outcome following Eqs. 2–5
// compute historical outcome, biased (Eqs. 2–5) or unbiased (Eq. 6)

3: oH ← []
4: for (r′i, l

′
i1 , l
′
i2 , c

′
i) ∈ h do

5: append(oH , oH(l1, l2, r
′, l′1, l

′
2, c
′))

6: βL ← 1
7: βH ← var(oH)
8: oC ← (βL ∗mean(oH) + βH ∗mean(oL))/(βL + βH)
9: return oC

RHC takes as input two methods for computing outcomes, oL,
which accepts data from one live observation, and oH , which accepts
as input the current target lists as well as one historical observation.
Further, RHC takes as input one live observation, i.e., the interleaved
list, original lists, and clicks obtained when interleaving the original
lists l1 and l2 that are currently compared. In addition, it accepts n
historical data points that were observed in previous comparisons
of two different result lists l′1 and l′2. The algorithm first generates
the live outcome as before (cf., Algorithm 3), using the live out-

come method oL (line 2). Then, additional outcome estimates are
computed using the historical data and oH(·).

In this paper we instantiate oH in two ways to explore the effects
of bias and variance on this approach. Previous work showed that
applying PI directly to historical data results in biased estimates of
comparison outcomes [11]. An alternative method, that compensates
for bias using importance sampling, is unbiased, but can suffer from
high variance when only little data is available. Both methods were
previously applied to an evaluation task. Their effectiveness was
similar for relatively small amounts of data, while for large amounts
of data the unbiased method was more reliable. In contrast, in the
online learning to rank task addressed here, we expect the effect
of bias and variance to be relatively small, because amounts of
historical data are small, and because subsequent ranker pairs are
relatively more similar to those used to obtain the historical samples
than in the evaluation setting addressed previously.

Our first (biased) instantiation of oH uses the same scoring
method as PI to estimate outcomes for the current target lists given
historical data (Eq. 2). It uses the historical r′ and c′ to count
clicks given assignments (n(a, c′, x)), but uses distributions T1,2

based on the current target lists l1 and l2. The resulting comparison
method computes outcomes based on historical data but may be
biased. Under the current target rankers, document distributions
may be different from those under which the historical data was
collected. This means that it is not guaranteed that each target ranker
has an equal chance of contributing its highly ranked documents to
the interleaved list, and to obtain clicks on these documents. As a
result, the target list that is more similar to the historical lists has an
advantage over the less similar one.

To address the problem of bias when historical data is used for
computing interleaved comparison outcomes, we use importance
sampling, as proposed in [11]. Importance sampling is a statisti-
cal method for compensating for differences between distributions,
when data collected under one (original) distribution is used to infer
information about a different (target) distribution. This approach is
frequently used in e.g., off-policy reinforcement learning [19].

Our second instantiation of oH (with importance sampling) is:

oIS =

|A|∑
i=1

(n(ai, c
′, 1)−n(ai, c

′, 2))P (ai|r′, q′)
P (r′|q′)
P ′(r′|q′) . (6)

As in the biased scoring method, n(·) counts the clicks each tar-
get list would obtain given an assignment and the original data
(c′). The obtained click difference is weighted by the probability of
each assignment. In contrast to the biased method, this outcome is
then weighted by its probability of occurring under the target dis-
tribution (P (·)) versus the original (historical) distribution (P ′(·)).
Intuitively, this means that observations that are more likely under
the target distribution, and less likely under the original distribu-
tion, obtain a high weight and vice versa. It has been shown that
outcomes obtained using importance sampling are unbiased (i.e.,
they converge to the expected outcome under the target distribution
in the limit) [23]. While oIS is unbiased, it may suffer from high
variance when the target and source distributions are very different
from each other, which may lead to unreliable outcome estimates.

After computing the live and historical estimates oL and oH ,
they are combined into a final estimate oC using the Graybill-Deal
estimator [7] (line 6–8). This combined estimator weights the two
estimates by the ratio of their variances. It was shown to result in
a minimal variance combined estimate when the variances of the
individual estimators are known, and to have strictly lower variance
than either individual estimate when their variances are estimated
on samples of size n > 10 [7].

A limitation of combining historical and live estimates according
to Algorithm 4 is that for any given comparison we only have one
live data point collected under the current target rankers, so that
the variance of the live outcome(s) cannot be estimated. Here, we
set the weight of the live outcomes to βL = 1.3 Our experiments
in §4 below investigate whether this approximation is sufficient
for improved performance. We hypothesize that the reliability of
comparisons can be improved using RHC, leading to faster learning.

3.5 Candidate Preselection
Our second approach for reusing historical data to speed up online

learning to rank for IR uses historical data to improve candidate
generation. Instead of randomly generating a candidate ranker to
test in each comparison, it generates a pool of candidate rankers, and
selects the most promising one using historical data. We hypothesize
that historical data can be used to identify promising rankers, and
that the increased quality of candidate rankers can speed up learning.
We call this second approach candidate preselection (CPS).

Algorithm 5 (CPS) Generating candidate rankers with preselection,
for use as g(δ,wt) in Algorithm 1.
1: Input: oH(l1, l2, r

′, l′1, l
′
2, c
′), wt, δ, ζ, η, h = n ×

(r′i, l
′
i1 , l
′
i2 , c

′
i)

2: e = []
// generate candidate pool

3: for i in (i = 1..η) do
4: append(e, generate_candidate(δ,wt))

// compare and eliminate candidates using historical data
5: while len(e) > 1 do
6: p← sample(e, 2)
7: oH ← []
8: for i (i = 1..ζ) do
9: (r′i, l

′
i1 , l
′
i2 , c

′
i)← sample(h, 1)

10: append(oH , oH(l(p[1].w), l(p[2].w), r′, l′1, l
′
2, c
′))

11: if mean(oH) < 0 then
12: remove(e,p[2])
13: else if mean(oH) > 0 then
14: remove(e,p[1])
15: else
16: remove(e, sample(p, 1))
17: return e[0] // return remaining candidate

Our implementation of CPS is shown in Algorithm 5, which re-
places the method generate_candidate(·) in our baseline method
(cf., Algorithm 1). As input it takes a comparison function oH(·)
that estimates comparison outcomes using historical data, a current
weight vector wt, the step size δ, arguments η and ζ that determine
the size of candidate pools and the number of historical comparisons
to conduct per ranker pair, and a vector of historical observations h.

The algorithm is called when a new candidate ranker is requested.
It first generates a pool of η candidate rankers by calling the original
generate_candidate(·) function (Algorithm 2) (lines 3–4). The
most promising ranker is determined in rounds, where in each round
a randomly selected pair of rankers (line 6) competes. For each pair,
ζ comparisons are performed on historical data points randomly
sampled from h with replacement (8–10). After the individual
historical estimates are obtained, their mean is used to determine
which ranker to eliminate from the pool. If there is a winner (i.e.,
oH 6= 0), the losing ranker is removed. Otherwise, one of the
3We also experimented with batches of comparisons where the same
original pair was used for several subsequent comparisons. However,
the performance loss due to the resulting smaller number of updates
outweighed the gain due to improved variance estimates.

rankers is selected to be removed at random. When only one element
remains in the candidate pool, it is returned as the most promising
candidate.

Our candidate selection approach ensures that a single candidate
is selected after a finite ((η − 1) × ζ) number of comparisons.
Because only the best candidate needs to be selected, the randomized
approach is expected to provide a good balance of effectiveness and
efficiency. In cases where the compared candidates perform equally
well, only one candidate needs to be retained (chosen randomly).

Like in §3.4 above, we investigate the effect of bias and variance
on this approach by implementing the comparison method oH in
two different ways, (1) using the biased (but low variance) method
defined by Eqs. 2–5, and (2) using the unbiased (potentially high
variance) method that uses importance sampling (Eq. 6).

We hypothesize that CPS can substantially improve the quality
of candidate rankers available for online learning, leading to faster
learning than using live data only. Regarding the biased and unbi-
ased version of CPS, we expect only small performance differences,
as the amount of historical data reused per live comparison is small.

4. EXPERIMENTS
Our experiments are designed to investigate whether online learn-

ing to rank for IR can be sped up by using historical data. They
are based on an existing simulation framework. This framework
combines fully annotated learning to rank data sets with probabilis-
tic user models to simulate user interactions with a search engine
that learns online. The use of this framework allows us to investi-
gate characteristics of our proposed learning approaches without
the potential risk of hurting a real system’s performance. Below,
we provide details of the evaluation framework, data sets, and user
models, as well as the performance metrics and parameter settings
used in our experiments.

The simulation framework works as follows. An incoming user
query is modeled as random sampling from a pool of queries pro-
vided with a learning to rank data set. The system generates a result
list to respond to the query using the features of candidate docu-
ments that are provided with the data set (this is similar to ranking
candidate documents after an initial matching/filtering step as would
be done while interacting with real users). Displaying the generated
result list to the user and observing clicks is simulated by applying
our user model, which generates clicks probabilistically on the basis
of the annotations available with the data set. The clicks are sent
back to the retrieval system, where feedback is inferred and learned
from. Then, the cycle continues with the next simulated user query.

We conduct all our experiments on the 9 data sets provided as
LETOR 3.0 and 4.0 (LEarning TO Rank) [18]. All data sets contain
feature vectors that represent the relationships between queries and
documents that are typical for various search settings. In addition,
the (manually assessed) relevance level of each document-query pair
is provided. Finally, all data sets are pre-split by query for 5-fold
cross validation.

The following search tasks are implemented: the data set OH-
SUMED models a literature search task, based on a query log of
a search engine for the MedLine abstract database. This data set
contains 106 queries that implement an informational search task.
The remaining 8 data sets are based on TREC Web track tasks run
between 2003 and 2008. The datasets HP2003, HP2004, NP2003,
and NP2004 implement navigational tasks, homepage finding and
named-page finding respectively. TD2003 and TD2004 implement
an informational task: topic distillation. All six data sets are based
on the .GOV document collection, a crawl of the .gov domain, and
contain between 50 and 150 queries and approximately 1000 judged
documents per query. A more recent document collection, .GOV2

formed the basis of MQ2007 and MQ2008. These data sets contain
1700 and 800 queries respectively, but far fewer judged documents
per query. The data sets OHSUMED, MQ2007 and MQ2008 are
annotated with graded relevance judgments (3 grades, from 0, not
relevant, to 2, highly relevant), while the remaining data sets are
labeled using binary assessments.

To generate clicks, we employ a user model based on the De-
pendent Click Model (DCM) [8],4 an extension of the Cascade
Model [6] that has been shown to be effective in explaining users’
click behavior in web search. The model explains position bias (i.e.,
the observation that higher-ranked results are much more likely to
be clicked than lower-ranked ones) by positing that users start exam-
ining documents at the top of a result list. For each document they
examine, they determine whether the document representation (e.g.,
consisting of title, snippet and URL) appears promising enough to
warrant a click (we model this step of deciding to click with a click
probability given some relevance label P (C|R)). After each click,
users decide whether they are satisfied with the information pro-
vided in the clicked document(s) and they want to stop examining
further results (with stop probability P (S|R)), or if they want to
continue examining results.

Table 1: Overview of the click models used.

click probabilities stop probabilities
relevance grade 0 1 2 0 1 2

perfect 0.0 0.5 1.0 0.0 0.0 0.0
navigational 0.05 0.5 0.95 0.2 0.5 0.9
informational 0.4 0.7 0.9 0.1 0.3 0.5

The user model instantiations used in our experiments are pro-
vided in Table 1. First, the perfect click model provides reliable
feedback, and is used to obtain an upper bound on performance.
The second (navigational) and third (informational) model reflect
the two types of search tasks implemented by our data sets, as
well as increasing levels of noise (i.e., smaller differences in click
probabilities for different relevance levels). For each instance, the
table provides the click and stop probabilities given a relevance
grade R. For example, under the navigational model, simulated
users would be very likely to encounter a highly relevant document
(P (C|2) = 0.95), and very likely to stop examining documents
once they clicked on such a document (P (S|2) = 0.9). Under
the informational model, users are less likely to stop, and click
probabilities for the different relevance grades are much more sim-
ilar, resulting in a higher level of noise. For data sets with binary
relevance judgments, only the two extremes are used.

Our experiments compare and contrast three baseline runs and
four experimental runs:

BI Baseline – learning with live data only, using Balanced Inter-
leave [14, 21] for interleaved comparisons. Balanced Inter-
leave generates interleaved result lists using a mostly deter-
ministic process, where only the starting list is selected at
random. Comparisons are made based on the number of
clicks each original list would obtain above a cutoff.

TD Baseline – learning with live data only, using Team Draft [20,
21] for interleaved comparisons. Team Draft randomizes
interleaving per pair of ranks, and assigns clicks to the original
list that contributed a document.

PI Baseline – learning with live data only, using PI (cf., §3.3).
4Models that take additional information into account have been
shown to more accurately reflect click behavior [27], but these make
stronger assumptions rendering experiments unnecessarily complex.

RHC-B Uses historical data to infer more reliable feedback (cf.,
§3.4), with biased comparison outcome estimates (Eq. 2).

RHC-U Uses historical data to infer more reliable feedback (cf.,
§3.4), with unbiased comparison outcome estimates (Eq. 6).

CPS-B Uses historical data for candidate preselection (cf., §3.5)
with biased comparison outcome estimates (Eq. 2).

CPS-U Uses historical data for candidate preselection (cf., §3.5)
with unbiased comparison outcome estimates (Eq. 6).

Our main evaluation metric is online performance, measured as
the cumulative discounted reward obtained over the course of T
interactions between system and user (cf. Eq. 1). This means that
we measure the utility of result lists presented to search engine
users while learning. Note that, although we run our experiments
over a limited number of interactions, discounting ensures that
our measured performance is a close approximation of the online
performance that could be obtained in an infinite horizon setting.

To approximate the true utility of a search engine result page
to a user, we compute Normalized Discounted Cumulative Gain
(NDCG) on the top κ = 10 results shown to the user, a standard
evaluation metric in information retrieval [4]:5

NDCG =

len(r)∑
i=1

2rel(r[i]) − 1

log2(i+ 1)
iNDCG−1. (7)

This metric sums over the gain that is based on the relevance label
(rel(r[i])) of each document, and divides it by a discount factor
(based on the log of the rank i at which the document was presented).
This sum is then normalized by the ideal NDCG (iNDCG) that would
be obtained on an ideal document ranking.

For each data set, we run experiments over 1000 iterations (i.e.,
simulated interactions), and repeat each experiment 25 times and
average results over all folds and repetitions. Parameters for the
DBGD learning algorithm are selected to match those found to
work best in previous work (w0 is initialized to zero, α = 0.01,
δ = 1, cf., [28]). For the remaining parameters, we report results
on one setting (for CPS, η = 6, ζ = 10, and λ = 10; for RHC,
λ = 10). The sensitivity to specific parameter settings is analyzed
in §6. We test for statistically significant differences using a two-
sided student’s t-test. To ensure repeatability of our experiments,
we make all source code used to obtain our results available online.6

5. RESULTS
In this section we present the results of our experiments, described

in §4, to answer our main research question: Can historical interac-
tion data be reused to speed online learning to rank? In addition to
our main question, we also investigate how historical data can best
be reused (i.e., to improve the reliability of evaluations, as in our
RHC approach, or to improve the quality of candidate rankers, as in
CPS), and whether and how historical data reuse is affected by bias
and variance in outcome estimates based on historical data.

Table 2 shows the online performance obtained on all LETOR 3.0
and 4.0 data sets, for the three click model instantiations specified in
Table 1, the three baseline runs BI, TD, PI, and the four experimental
runs RHC-B, RHC-U, CPS-B and CPS-U. For reasons discussed
below, BI outperforms the other baseline methods. Therefore, we
use BI as our baseline for significance testing.
5Note that our formulation differs from earlier ones, including the
one provided with the LETOR toolkit, where documents at rank 2
are not discounted (cf., [12]). Here, we use the formulation from [4]
so that relevance differences at the highest ranks can be detected.
6Available from http://ilps.science.uva.nl/
resources/online-learning-framework.

http://ilps.science.uva.nl/resources/online-learning-framework
http://ilps.science.uva.nl/resources/online-learning-framework

BI TD PI RHC-B RHC-U CPS-B CPS-U

perfect click model

1 HP2003 107.84 108.94 97.62H 95.51H 95.60H 118.24N 116.72N

2 HP2004 99.82 99.72 89.72H 87.49H 88.54H 109.12N 108.40N

3 NP2003 97.94 98.15 88.67H 87.03H 89.05H 108.82N 108.04N

4 NP2004 102.96 102.72 93.50H 93.12H 92.93H 113.97N 114.35N

5 TD2003 40.38 38.81 36.21H 34.10H 33.79H 47.26N 47.22N

6 TD2004 36.19 35.87 34.55H 30.82H 31.60H 43.96N 44.72N

7 OHSUMED 70.68 70.14 68.29H 64.23H 65.29H 72.57 72.36
8 MQ2007 59.87 60.18 58.23H 58.69O 58.22H 64.30N 63.60N

9 MQ2008 79.03 77.98 75.57H 76.08H 77.09H 84.35N 84.68N

navigational click model

10 HP2003 93.82 93.52 79.15H 85.29H 84.22H 114.93N 116.24N

11 HP2004 83.23 82.54 69.28H 77.25H 76.66H 106.12N 107.48N

12 NP2003 88.00 85.07 74.77H 78.75H 80.47H 106.81N 107.58N

13 NP2004 90.53 88.50 79.43H 85.81H 86.84O 113.62N 112.39N

14 TD2003 34.60 33.20 30.99H 30.53H 31.07H 44.77N 44.56N

15 TD2004 32.71 31.78 30.72H 27.60H 27.78H 41.11N 39.85N

16 OHSUMED 67.54 67.96 65.10H 62.60H 62.27H 68.16 70.28M

17 MQ2007 58.42 58.92 56.33H 55.71H 57.36 61.61N 61.63N

18 MQ2008 76.14 76.32 72.84H 74.21O 74.66O 81.41N 81.70N

informational click model

19 HP2003 55.63 55.65 46.87H 65.54N 63.92N 104.46N 107.61N

20 HP2004 42.99 45.02 37.52O 56.23N 55.66N 83.04N 89.17N

21 NP2003 53.38 52.88 45.38H 65.63N 64.25N 103.09N 103.34N

22 NP2004 58.31 57.62 52.32O 71.48N 72.81N 96.20N 99.88N

23 TD2003 22.11 21.99 21.74 25.20N 26.12N 38.47N 38.86N

24 TD2004 23.66 22.87 21.60H 22.35 22.22 29.63N 30.27N

25 OHSUMED 63.39 64.91 60.48H 58.65H 58.47H 61.05 64.29
26 MQ2007 55.29 54.58 53.99 54.79 54.37 56.35 57.76N

27 MQ2008 73.14 71.83 70.42H 70.89H 70.42H 76.63N 76.97N

Table 2: Online performance (in terms of discounted cumulative reward) when learning with interleaved comparison methods. Best
runs per row are highlighted in bold. Statistically significant improvements (losses) from the baseline method BI are indicated by M

(p = 0.05) and N (p = 0.01) (O and H).
Overall, we see that the highest online performance is achieved by

our CPS method for most data sets and click models. The observed
improvements over BI are statistically significant with p < 0.01,
and substantial. For example, for the data set HP2003, the highest
performance under perfect click feedback is 118.24 (using biased
estimates of comparison outcomes), which constitutes an improve-
ment of 8.5% over the best-performing baseline method TD (cf.,
row 1). The only exception is the data set OHSUMED, for which
performance under the perfect and informational click models is
statistically equivalent for BI and CPS (rows 7 and 25).

To put the obtained absolute online performance scores in per-
spective, recall that we measure discounted cumulative gain, i.e.,
high online performance is obtained when a method both learns well
(i.e., it achieves high offline performance, in terms of NDCG), and
it learns quickly, i.e., after a small number of interactions. In our
experimental setup, a method that presented perfect result lists (with
NDCG = 1) on all interactions could obtain an online performance
of 200.0, while a method that would obtain no reward on the first
500 interactions and perfect results after would achieve an online
performance of only 15.0. Scores obtained by our methods fall be-
tween these two extremes, indicating that good rankers are learned
within a few hundred simulated interactions.

For the baseline methods, which learn from live data only, we
find that online performance of BI and TD is very similar, while that
of PI is significantly lower for most data sets and click models. To

understand why, we compare the offline performance and learning
speed of these methods (cf., the offline performance on data set
NP2003 in Figure 1).7 We see that the final offline performance is
very similar (differences are not statistically significant), and that
they also learn equally fast. Thus, PI learns as well as BI and TD,
but loses online performance due to the increase in randomization
during interleaving. Compared to the evaluation setting, where
PI was shown to outperform BI and TD when applied to compare
rankers over large amounts of data, PI performs worse than expected
[9]. PI provides fine-grained information about the magnitude of
ranker difference, which leads to more accurate comparisons when
outcomes are aggregated over repeated samples. However, in the
online learning to rank setting with live data only, ranker compar-
isons are based on a single data sample, and information about the
magnitude of ranker differences is lost. Developing online learning
methods that exploit this additional information is a direction for
future work.

Our methods that learn from historical data are enabled by PI,
meaning that to improve performance over the best-performing base-
line, BI, the methods need to learn substantially faster, to overcome
the initial performance loss incurred by the randomization inherent
to PI. For the CPS method, we see that this is the case. The method
achieves much higher online performance than any of the methods

7For brevity we present offline performance plots for only one data
set. Plots for the remaining data sets are qualitatively similar.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 200 400 600 800 1000

(a)

BI

TD

PI

RHC-B

RHC-U

CPS-B

CPS-U

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 200 400 600 800 1000

(b)

BI

TD

PI

RHC-B

RHC-U

CPS-B

CPS-U

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 200 400 600 800 1000

(c)

BI

TD

PI

RHC-B

RHC-U

CPS-B

CPS-U

Figure 1: Offline performance (computed on held-out test
queries after each learning step) on NP2003 data set, for the
perfect, navigational, and informational click models.

that learn with live data only. Furthermore, the performance gain
for reusing historical data is particularly big when click feedback is
noisy, with gains up to 107% (row 20). Looking at offline perfor-
mance (Figure 1), we observe that CPS learns faster than methods
that learn from live data only. In particular, the speed-up is biggest
for the noisy informational click model, suggesting that the CPS
method can effectively limit the effect of noise in click feedback.

Performance for our method RHC is generally lower than that ob-
tained by CPS or the baselines that only take live data into account.
However, under noisy feedback (the informational click model) on-
line performance is significantly higher than that obtained by BI on
5 of the 9 data sets (rows 19–23). Comparing again to offline perfor-
mance, we find that RHC learns as quickly as the baseline methods,
but cannot make as effective use of the learned rankers, similar to PI.
However, when feedback is noisy, the method does succeed in mak-
ing comparisons more reliable (cf., part (c) of Figure 1). Thus, we
conclude that RHC can effectively leverage historical data to make
ranker comparisons more reliable, but this results in performance
gains only when click feedback is indeed noisy.

The effect of removing bias is small overall. Of the differences

between RHC-B and RHC-U, only that in row 26 (MQ2007, infor-
mational click model) is statistically significant. This small effect
is expected, because for the relatively few samples that are com-
bined in historical outcome estimates (e.g., for λ = 10), removing
bias can only have a small effect on absolute outcomes. However,
several patterns do emerge. For RHC, using the unbiased method
(RHC-U) improves online performance for 5 of the 9 data sets, and
performance decreases in 4 cases. For the navigational click model,
differences are smaller, and the trend continues for the informational
model. It appears that for RHC, removing bias can slightly improve
learning. This can be explained by the direction of the bias. We use
the λ most recent historical points. For these, the original and target
distributions are expected to be most similar, so bias or variance
should be smallest for these samples. Also, the original distribution
will typically be biased towards the current best ranker wt, as it
was used before. Therefore, there is a slightly increased chance of
observing clicks on documents highly ranked by wt, giving a dis-
advantage to the new candidate ranker. This means that, due to this
bias, a good candidate may be missed, leading to slower learning.
When feedback is noisier, this effect is masked by the noise.

For CPS, the biased version of the method performs slightly
better than CPS-U under perfect feedback (none of the differences
are statistically significant). However, CPS-U performs better when
click feedback is noisier. It appears that, when feedback is very
reliable (perfect user model), the increase in noise due to removing
bias may slow learning more than can be compensated for by the
bias removal. However, increases in click noise can amplify the
effect of bias. CPS evaluates several rankers distributed around the
current best ranker, wt. It is itself not evaluated using historical
data, but the candidate rankers that generate rankings that are more
similar to the current (or previous) best ranker have an advantage.
This advantage is stronger when click feedback is noisier, because
highly-ranked documents that are not relevant to the query are more
likely to be clicked than under more reliable feedback. This bias
leads to slower learning and the observed lower online performance
for CPS-B under noisy feedback. Overall, we can conclude that
the unbiased methods should be preferred over biased methods,
especially when click feedback is expected to be noisy.

Our main results show consistently high performance for our CPS
method, which can achieve significantly and substantially higher
online performance than all other methods tested. We find that
reusing historical data using CPS allows faster learning than with
current online learning to rank methods that take only live data into
account. In the next section, we analyze our results in more detail.

6. ANALYSIS
In this section, we first compare the performance of our methods

to supervised learning to rank approaches (§6.1). Then we compare
our methods’ sensitivity to parameter settings (§6.2 and 6.3).

6.1 Comparison with Previous Work
Most previous work on learning to rank for IR focused on super-

vised approaches, and measured the offline performance achieved
by learners after all training data had been processed. Our approach
is fundamentally different, as it learns online, from relative feedback
observed on the result lists presented to users. Despite this more
limited form of feedback, previous work showed that online learning
to rank can achieve competitive offline performance, at least when
click feedback is reliable [10].

To allow for some comparison with supervised learning to rank
approaches, we show the offline performance achieved by CPS-
U in terms or LETOR NDCG at different cutoffs on the perfect
and informational click models in Table 3. Despite the degenerate
quality of feedback available in the online setting, final performance

 60

 80

 100

 120

2 6 10

(a) CPS - number of candidates (η)

5 10 15

(b) CPS - repetitions (ζ)

10 100

(c) CPS - history length (λ)

5 10 15

 20

 40

 60

 80

 100

(d) RHC - history length (λ)

Figure 2: Online performance (min, max, and mean with standard error) after 1000 iterations for different settings of parameters
(a) η, (b) ζ, and (c) λ for CPS and (d) λ for RHC on the NP2003 data set and navigational click model.

after 1000 iterations is reasonable, compared to supervised learning
to rank methods [18]. For example, final performance of CPS-
U under perfect feedback outperforms supervised regression on
four out of the seven LETOR 3.0 data sets, and it outperforms
other supervised listwise approaches (RankBoost and/or FRank) on
three data sets. Even though performance under the much noisier
informational feedback is significantly lower, offline performance
remains competitive.

perfect informational
N@1 N@3 N@10 N@1 N@3 N@10

HP2003 0.685 0.745 0.777 0.661 0.715 0.749
HP2004 0.533 0.662 0.719 0.533 0.662 0.719
NP2003 0.524 0.696 0.754 0.508 0.669 0.730
NP2004 0.523 0.684 0.746 0.478 0.632 0.691
TD2003 0.286 0.273 0.273 0.226 0.243 0.249
TD2004 0.307 0.279 0.250 0.188 0.200 0.188
OHSUMED 0.362 0.380 0.367 0.326 0.342 0.335
MQ2007 0.261 0.296 0.331 0.236 0.270 0.306
MQ2008 0.277 0.361 0.461 0.244 0.325 0.431

Table 3: Offline performance after 1000 iterations in terms of
LETOR NDCG and cutoffs 1, 3, and 10 for CPS-U under the
perfect and informational click models.

6.2 CPS - Sensitivity to Parameter Settings
Above, we reported results for only one set of parameters. Here,

we investigate the sensitivity of our CPS method to changes in these
parameters. CPS has three parameters: the history length λ (default:
10), the size of the candidate pool η (default: 6), and the number
of historical comparisons per candidate pair ζ (default: 10). The
algorithm is linear in η and ζ per live update (O(ηζ)). An increase
in λ does not significantly affect the run time of the algorithm, but
only determines the number of historical samples kept in memory,
from which the samples for candidate comparisons are selected.

Figure 2 (parts a–c) shows the online performance achieved by
CPS-U under the navigational click model on the data set NP2003
when varying one parameter at a time. For η, the size of the candi-
date pool, a smaller pool (η = 2) leads to a decrease in performance
of 13.6% percent. Increasing the number of candidates to 10 in-
creases online performance to 110.67, a much smaller change of
2.9%. This suggests that the performance reported above (§5) can be
further increased by using larger candidate pools. However, returns
are expected to diminish as ever more candidates are used.

For the number of repetitions (ζ), effects are much smaller. Here,
increasing ζ to 15 leads to no significant improvement in mean
online performance, although comparisons are slightly more reliable
(shown by the higher minimum).

Increasing the history length to λ = 100 significantly decreases
the performance of CPS. The reason is that the more recent historical
samples used with a smaller λ are collected on ranker pairs that are
more similar to the current candidate rankers. When older samples
are used instead, the variance of historical outcome estimates in-
creases (under CPS-B, bias would increase), leading to diminished
performance.

Overall, we find that performance under CPS can be further
improved by increasing the size of the candidate pool. For the re-
maining parameters, performance is relatively stable and decreases
gracefully when less optimal settings are used. Finally, our analysis
indicates that additional computational resources are best spent on
increasing the size of the candidate pool (η). Although the linear in-
crease in computation is expected to lead to sub-linear performance
gains, developers of deployed applications are typically willing
to invest in additional computing time when it translates to even
small performance gains (while in a scientific setting computational
resources limit what experiments are feasible to run).

6.3 RHC - Sensitivity to Parameter Settings
RHC has only one parameter, the history length λ (cf., Algo-

rithms 1 and 4, default: 10). This parameter determines how many
historic data points are kept in memory, and are used to compare the
current best ranker wt to the candidate ranker w′t. This method is
linear in λ per live update.

The sensitivity of RHC-U to changes in λ is shown in Figure 2,
part (d). Setting λ = 5 leads to a statistically significant decrease
in online performance of this algorithm. However, this decrease
constitutes a performance change of only 1.6%. Increasing the
amount of history used to λ = 15 has no significant effect on
online performance. We can conclude that the performance of this
algorithm is relatively robust to changes in λ (thus, investing in
additional resources to increase λ is not recommended).

7. CONCLUSION
In this paper we investigated whether and how historical data can

be reused to speed up online learning to rank for IR. We proposed
two approaches for integrating estimates based on historical data
with a stochastic gradient descent algorithm for online learning to
rank. Our first approach, RHC, uses historical comparison estimates
to complement live comparisons and to make them more reliable.
Our second approach, CPS, uses historical data for preselecting
candidate rankers, thereby improving the quality of the rankers that
are evaluated in live interactions with search engine users.

Our experimental evaluation of the proposed methods, based on
the 9 LETOR data sets and 3 click models that allowed us to investi-

gate online performance of the methods under varying levels of click
noise, yielded several insights. First, we found that the CPS method
can substantially and significantly speed up online learning to rank
in IR. We observed high gains in online performance over methods
that use live data only for all click models. Second, performance
gains of CPS were particularly high when click feedback was noisy.
This result demonstrates that CPS is effective in compensating for
noise in click feedback. Third, RHC was found to make ranker
comparisons more reliable. However, positive effects on learning
were observed only under noisy feedback and performance gains
were lower than those obtained by CPS. Finally, we found that com-
pensating for bias in click feedback had only small effects on online
performance but that unbiased variants of our methods generally
performed better than biased ones.

This work is the first to show that historical data can be used to
significantly and substantially improve online performance in online
learning to rank for IR. In addition, our approaches and experiments
pointed at interesting directions for future work. While making
comparisons themselves more reliable resulted in only minor speed-
up in learning, major improvements were obtained when improving
the quality of candidate rankers used for learning. This suggests that
designing more elaborate candidate selection strategies, possibly
taking properties of the solution space into account, is a promising
direction for future research.

Acknowledgements
This research was partially supported by the European Union’s
ICT Policy Support Programme as part of the Competitiveness and
Innovation Framework Programme, CIP ICT-PSP under grant agree-
ment nr 250430, the European Community’s Seventh Framework
Programme (FP7/2007-2013) under grant agreements nr 258191
(PROMISE Network of Excellence) and 288024 (LiMoSINe project),
the Netherlands Organisation for Scientific Research (NWO) un-
der project nrs 612.061.814, 612.061.815, 640.004.802, 727.011.-
005, 612.001.116, HOR-11-10, the Center for Creation, Content
and Technology (CCCT), the Hyperlocal Service Platform project
funded by the Service Innovation & ICT program, the WAHSP and
BILAND projects funded by the CLARIN-nl program, the Dutch
national program COMMIT, by the ESF Research Network Program
ELIAS, and the Elite Network Shifts project funded by the Royal
Dutch Academy of Sciences.

8. REFERENCES
[1] D. Agarwal, B. Chen, P. Elango, N. Motgi, S. Park,

R. Ramakrishnan, S. Roy, and J. Zachariah. Online models for
content optimization. In NIPS’08, pages 17–24, 2008.

[2] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis
of the multiarmed bandit problem. Machine Learning, 47(2):
235–256, May 2002.

[3] A. G. Barto, R. S. Sutton, and P. S. Brouwer. Associative
search network: A reinforcement learning associative memory.
IEEE Trans. Syst., Man, and Cybern., 40:201–211, 1981.

[4] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds,
N. Hamilton, and G. Hullender. Learning to rank using
gradient descent. In ICML ’05, pages 89–96, 2005.

[5] O. Chapelle, T. Joachims, F. Radlinski, and Y. Yue.
Large-scale validation and analysis of interleaved search
evaluation. ACM Trans. Inf. Syst., 30(1):6:1–6:41, 2012.

[6] N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey. An
experimental comparison of click position-bias models. In
WSDM ’08, pages 87–94, 2008.

[7] F. Graybill and R. Deal. Combining unbiased estimators.
Biometrics, 15(4):543–550, 1959.

[8] F. Guo, C. Liu, and Y. M. Wang. Efficient multiple-click
models in web search. In WSDM ’09, pages 124–131, 2009.

[9] K. Hofmann, S. Whiteson, and M. de Rijke. A probabilistic
method for inferring preferences from clicks. In CIKM ’11,
pages 249–258, 2011.

[10] K. Hofmann, S. Whiteson, and M. de Rijke. Balancing
exploration and exploitation in listwise and pairwise online
learning to rank for information retrieval. Information
Retrieval, 2012. doi: 10.1007/s10791-012-9197-9.

[11] K. Hofmann, S. Whiteson, and M. de Rijke. Estimating
interleaved comparison outcomes from historical click data.
In CIKM ’12, 2012.

[12] K. Järvelin and J. Kekäläinen. Cumulated gain-based
evaluation of IR techniques. ACM Trans. Inf. Syst., 20(4):
422–446, October 2002.

[13] T. Joachims. Optimizing search engines using clickthrough
data. In KDD ’02, pages 133–142, 2002.

[14] T. Joachims. Evaluating retrieval performance using
clickthrough data. In J. Franke, G. Nakhaeizadeh, and I. Renz,
editors, Text Mining, pages 79–96. Physica/Springer, 2003.

[15] J. Langford, A. Strehl, and J. Wortman. Exploration
scavenging. In ICML ’08, pages 528–535, 2008.

[16] L. Li, W. Chu, J. Langford, and R. E. Schapire. A
contextual-bandit approach to personalized news article
recommendation. In WWW ’10, pages 661–670, 2010.

[17] L. Li, W. Chu, J. Langford, and X. Wang. Unbiased offline
evaluation of contextual-bandit-based news article
recommendation algorithms. In WSDM ’11, pages 297–306,
2011.

[18] T. Y. Liu. Learning to rank for information retrieval. Found.
and Trends in Inf. Retr., 3(3):225–331, 2009.

[19] D. Precup, R. Sutton, and S. Singh. Eligibility traces for
off-policy policy evaluation. In ICML’00, pages 759–766,
2000.

[20] F. Radlinski and N. Craswell. Comparing the sensitivity of
information retrieval metrics. In SIGIR ’10, pages 667–674,
2010.

[21] F. Radlinski, M. Kurup, and T. Joachims. How does
clickthrough data reflect retrieval quality? In CIKM ’08,
pages 43–52, 2008.

[22] M. Sanderson. Test collection based evaluation of information
retrieval systems. Found. and Trends in Inf. Retr., 4(4):
247–375, 2010.

[23] D. Schuurmans. Greedy importance sampling. In NIPS ’99,
1999.

[24] A. Strehl, C. Mesterharm, M. Littman, and H. Hirsh.
Experience-efficient learning in associative bandit problems.
In ICML ’06, pages 889–896, 2006.

[25] R. S. Sutton and A. G. Barto. Reinforcement learning: An
introduction. MIT Press, Cambridge, MA, USA, 1998.

[26] M. Szummer and E. Yilmaz. Semi-supervised learning to rank
with preference regularization. In CIKM ’11, pages 269–278,
2011.

[27] D. Xu, Y. Liu, M. Zhang, S. Ma, and L. Ru. Incorporating
revisiting behaviors into click models. In WSDM ’12, pages
303–312, 2012.

[28] Y. Yue and T. Joachims. Interactively optimizing information
retrieval systems as a dueling bandits problem. In ICML’09,
pages 1201–1208, 2009.

[29] Y. Yue, J. Broder, R. Kleinberg, and T. Joachims. The
k-armed dueling bandits problem. Journal of Computer and
System Sciences, 78(5):1538 – 1556, 2012.

	1 Introduction
	2 Related Work
	3 Method
	3.1 Problem Formulation
	3.2 Dueling Bandit Gradient Descent
	3.3 Probabilistic Interleave
	3.4 Reliable Historical Comparison
	3.5 Candidate Preselection

	4 Experiments
	5 Results
	6 Analysis
	6.1 Comparison with Previous Work
	6.2 CPS - Sensitivity to Parameter Settings
	6.3 RHC - Sensitivity to Parameter Settings

	7 Conclusion
	8 References

